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Data Ensembles for Condition Monitoring and Predictive
Maintenance

Data analysis is the heart of any condition monitoring and predictive maintenance activity. Predictive
Maintenance Toolbox provides tools called ensemble datastores for creating, labeling, and managing
the often large, complex data sets needed for predictive maintenance algorithm design.

The data can come from measurements on systems using sensors such as accelerometers, pressure
gauges, thermometers, altimeters, voltmeters, and tachometers. For instance, you might have access
to measured data from:

• Normal system operation
• The system operating in a faulty condition
• Lifetime record of system operation (run-to-failure data)

For algorithm design, you can also use simulated data generated by running a Simulink model of your
system under various operating and fault conditions.

Whether using measured data, generated data, or both, you frequently have many signals, ranging
over a time span or multiple time spans. You might also have signals from many machines (for
example, measurements from 100 separate engines all manufactured to the same specifications). And
you might have data representing both healthy operation and fault conditions. In any case, designing
algorithms for predictive maintenance requires organizing and analyzing large amounts of data while
keeping track of the systems and conditions the data represents.

Ensemble datastores can help you work with such data, whether it is stored locally or in a remote
location such as cloud storage using Amazon S3™ (Simple Storage Service), Windows Azure® Blob
Storage, and Hadoop® Distributed File System (HDFS™).

Data Ensembles
The main unit for organizing and managing multifaceted data sets in Predictive Maintenance Toolbox
is the data ensemble. An ensemble is a collection of data sets, created by measuring or simulating a
system under varying conditions.

For example, consider a transmission gear box system in which you have an accelerometer to
measure vibration and a tachometer to measure the engine shaft rotation. Suppose that you run the
engine for five minutes and record the measured signals as a function of time. You also record the
engine age, measured in miles driven. Those measurements yield the following data set.

Now suppose that you have a fleet of many identical engines, and you record data from all of them.
Doing so yields a family of data sets.
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This family of data sets is an ensemble, and each row in the ensemble is a member of the ensemble.

The members in an ensemble are related in that they contain the same data variables. For instance,
in the illustrated ensemble, all members include the same four variables: an engine identifier, the
vibration and tachometer signals, and the engine age. In that example, each member corresponds to
a different machine. Your ensemble might also include that set of data variables recorded from the
same machine at different times. For instance, the following illustration shows an ensemble that
includes multiple data sets from the same engine recorded as the engine ages.

In practice, the data for each ensemble member is typically stored in a separate data file. Thus, for
instance, you might have one file containing the data for engine 01 at 9,500 miles, another file
containing the data for engine 01 at 21,250 miles, and so on.

Simulated Ensemble Data

In many cases, you have no real failure data from your system, or only limited data from the system in
fault conditions. If you have a Simulink model that approximates the behavior of the actual system,
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you can generate a data ensemble by simulating the model repeatedly under various conditions and
logging the simulation data. For instance, you can:

• Vary parameter values that reflect the presence or absence of a fault. For example, use a very low
resistance value to model a short circuit.

• Injecting signal faults. Sensor drift and disturbances in the measured signal affect the measured
data values. You can simulate such variation by adding an appropriate signal to the model. For
example, you can add an offset to a sensor to represent drift, or model a disturbance by injecting a
signal at some location in the model.

• Vary system dynamics. The equations that govern the behavior of a component may change for
normal and faulty operation. In this case, the different dynamics can be implemented as variants
of the same component.

For example, suppose that you have a Simulink model that describes a gear-box system. The model
contains a parameter that represents the drift in a vibration sensor. You simulate this model at
different values of sensor drift, and configure the model to log the vibration and tachometer signals
for each simulation. These simulations generate an ensemble that covers a range of operating
conditions. Each ensemble member corresponds to one simulation, and records the same data
variables under a particular set of conditions.

The generateSimulationEnsemble command helps you generate such data sets from a model in
which you can simulate fault conditions by varying some aspect of the model.

Ensemble Variables
The variables in your ensemble serve different purposes, and accordingly can be grouped into several
types:

• Data variables — The main content of the ensemble members, including measured data and
derived data that you use for analysis and development of predictive maintenance algorithms. For
example, in the illustrated gear-box ensembles, Vibration and Tachometer are the data
variables. Data variables can also include derived values, such as the mean value of a signal, or
the frequency of the peak magnitude in a signal spectrum.
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• Independent variables — The variables that identify or order the members in an ensemble, such as
timestamps, number of operating hours, or machine identifiers. In the ensemble of measured gear-
box data, Age is an independent variable.

• Condition variables — The variables that describe the fault condition or operating condition of the
ensemble member. Condition variables can record the presence or absence of a fault state, or
other operating conditions such as ambient temperature. In the ensemble of simulated gear-box
data, SensorDrift is a condition variable. Condition variables can also be derived values, such
as a single scalar value that encodes multiple fault and operating conditions.

In practice, your data variables, independent variables, and condition variables are all distinct sets of
variables.

Ensemble Data in Predictive Maintenance Toolbox
With Predictive Maintenance Toolbox, you manage and interact with ensemble data using ensemble
datastore objects. In MATLAB®, time-series data is often stored as a vector or a timetable. Other
data might be stored as scalar values (such as engine age), logical values (such as whether a fault is
present or not), strings (such as an identifier), or tables. Your ensemble can contain any data type
that is useful to record for your application. In an ensemble, you typically store the data for each
member in a separate file. Ensemble datastore objects help you organize, label, and process
ensemble data. Which ensemble datastore object you use depends on whether you are working with
measured data on disk, or generating simulated data from a Simulink model.

• simulationEnsembleDatastore objects — Manage data generated from a Simulink model
using generateSimulationEnsemble.

• fileEnsembleDatastore objects — Manage any other ensemble data stored on disk, such as
measured data.

The ensemble datastore objects contain information about the data stored on disk and allow you to
interact with the data. You do so using commands such as read, which extracts data from the
ensemble into the MATLAB workspace, and writeToLastMemberRead, which writes data to the
ensemble.

Last Member Read

When you work with an ensemble, the software keeps track of which ensemble member it has most
recently read. When you call read, the software selects the next member to read and updates the
LastMemberRead property of the ensemble to reflect that member. When you next call
writeToLastMemberRead, the software writes to that member.

For example, consider the ensemble of simulated gear-box data. When you generate this ensemble
using generateSimulationEnsemble, the data from each simulation run is logged to a separate
file on disk. You then create a simulationEnsembleDatastore object that points to the data in
those files. You can set properties of the ensemble object to separate the variables into groups such
as independent variables or condition variables.

Suppose that you now read some data from the ensemble object, ensemble.

data = read(ensemble);

The first time you call read on an ensemble, the software designates some member of the ensemble
as the first member to read. The software reads selected variables from that member into the
MATLAB workspace, into a table called data. (The selected variables are the variables you specify
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in the SelectedVariables property of ensemble.) The software updates the property
ensemble.LastMemberRead with the file name of that member.

Until you call read again, the last-member-read designation stays with the ensemble member to
which the software assigned it. Thus, for example, suppose that you process data to compute some
derived variable, such as the frequency of the peak value in the vibration signal spectrum, VibPeak.
You can append the derived value to the ensemble member to which it corresponds, which is still the
last member read. To do so, first expand the list of data variables in ensemble to include the new
variable.

ensemble.DataVariables = [ensemble.DataVariables; "VibPeak"]

This operation is equivalent to adding a new column to the ensemble, as shown in the next
illustration. The new variable is initially populated in each ensemble by a missing value. (See
missing for more information.)

Now, use writeToLastMemberRead to fill in the value of the new variable for the last member read.

newdata = table(VibPeak,'VariableNames',{'VibPeak'});
writeToLastMemberRead(ensemble,newdata);
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In the ensemble, the new value is present, and the last-member-read designation remains on the
same member.

The next time you call read on the ensemble, it determines the next member to read, and returns the
selected variables from that member. The last-member-read designation advances to that member.

The hasdata command tells you whether all members of the ensemble have been read. The reset
command clears the "read" designation from all members, such that the next call to read operates on
the first member of the ensemble. The reset operation clears the LastMemberRead property of the
ensemble, but it does not change other ensemble properties such as DataVariables or
SelectedVariables. It also does not change any data that you have written back to the ensemble.
For an example that shows more interactions with an ensemble of generated data, see “Generate and
Use Simulated Data Ensemble” on page 1-10.

Reading Measured Data

Although the previous discussion used a simulated ensemble as an example, the last-member-read
designation behaves the same way in ensembles of measured data that you manage with
fileEnsembleDatastore. However, when you work with measured data, you have to provide
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information to tell the read and writeToLastMemberRead commands how your data is stored and
organized on disk.

You do so by setting properties of the fileEnsembleDatastore object to functions that you write.
Set the ReadFcn property to the handle of a function that describes how to read the data variables
from a data file. When you call read, it uses this function to access the next ensemble file, and to
read from it the variables specified in the SelectedVariables property of the ensemble datastore.
Similarly, you use the WriteToMemberFcn property of the fileEnsembleDatastore object to
provide a function that describes how to write data to a member of the ensemble.

For examples that show these interactions with an ensemble of measured data on disk, see:

• “File Ensemble Datastore With Measured Data” on page 1-17
• “File Ensemble Datastore Using Data in Text Files” on page 1-21

Ensembles and MATLAB Datastores

Ensembles in Predictive Maintenance Toolbox are a specialized kind of MATLAB datastore (see
“Getting Started with Datastore” (MATLAB)). The read and writeToLastMemberRead commands
have behavior that is specific to ensemble datastores. Additionally, the following MATLAB datastore
commands work with ensemble datastores the same as they do with other MATLAB datastores.

• hasdata — Determine whether an ensemble datastore has members that have not yet been read.
• reset — Restore an ensemble datastore to the state where no members have yet been read. In

this state, there is no current member. Use this command to reread data you have already read
from an ensemble.

• tall — Convert ensemble datastore to tall table. (See “Tall Arrays for Out-of-Memory Data”
(MATLAB)).

• progress — Determine what percentage of an ensemble datastore has been read.
• partition — Partition an ensemble datastore into multiple ensemble datastores for parallel

computing. (For ensemble datastores, use the partition(ds,n,index) syntax.)
• numpartitions — Determine number of datastore partitions.

Reading from Multiple Ensemble Members

By default, the read command returns data from one ensemble member at a time. To process data
from more than one ensemble member at a time, set the ReadSize of the ensemble datastore object
to a value greater than 1. For instance, if you set ReadSize to 3, then each call to read returns a
table with three rows, and designates three ensemble members as last member read. For details, see
the fileEnsembleDatastore and simulationEnsembleDatastore reference pages.

Convert Ensemble Data into Tall Tables
Some functions, such as many statistical analysis functions, can operate on data in tall tables, which
let you work with out-of-memory data that is backed by a datastore. You can convert data from an
ensemble datastore into a tall table for use with such analysis commands using the tall command.

When working with large ensemble data, such as long time-series signals, you typically process them
member-by-member in the ensemble using read and writeToLastMemberRead. You process the
data to compute some feature of the data that can serve as a useful condition indicator for that
ensemble member.
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Typically, your condition indicator is a scalar value or some other value that takes up less space in
memory than the original unprocessed signal. Thus, once you have written such values to your
datastore, you can use tall and gather to extract the condition indicators into memory for further
statistical processing, such as training a classifier.

For example, suppose that each member of your ensemble contains time-series vibration data. For
each member, you read the ensemble data and compute a condition indicator that is a scalar value
derived from a signal-analysis process. You write the derived value back to the member. Suppose that
the derived value is in an ensemble variable called Indicator and a label containing information
about the ensemble member (such as a fault condition) is in a variable called Label. To perform
further analysis on the ensemble, you can read the condition indicator and label into memory, without
reading in the larger vibration data. To do so, set the SelectedVariables property of the ensemble
to the variables you want to read. Then use tall to create a tall table of the selected variables, and
gather to read the values into memory.

ensemble.SelectedVariables = ["Indicator","Label"];
featureTable = tall(ensemble);
featureTable = gather(featureTable);

The resulting variable featureTable is an ordinary table residing in the MATLAB workspace. You
can process it with any function that supports the MATLAB table data type.

For examples that illustrate the use of tall and gather to manipulate ensemble data for predictive
maintenance analysis, see:

• “Rolling Element Bearing Fault Diagnosis” on page 4-7
• “Using Simulink to Generate Fault Data” on page 1-25

Processing Ensemble Data
After organizing your data in an ensemble, the next step in predictive maintenance algorithm design
is to preprocess the data to clean or transform it. Then you process the data further to extract
condition indicators, which are data features that you can use to distinguish healthy from faulty
operation. For more information, see:

• “Data Preprocessing for Condition Monitoring and Predictive Maintenance” on page 2-2
• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2

See Also
fileEnsembleDatastore | generateSimulationEnsemble | read |
simulationEnsembleDatastore

More About
• “Generate and Use Simulated Data Ensemble” on page 1-10
• “File Ensemble Datastore With Measured Data” on page 1-17
• “File Ensemble Datastore Using Data in Text Files” on page 1-21
• “Organize System Data for Diagnostic Feature Designer” on page 7-20
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Generate and Use Simulated Data Ensemble
This example shows how to generate a data ensemble for predictive-maintenance algorithm design by
simulating a Simulink® model of a machine while varying a fault parameter. The example then
illustrates some of the ways you interact with a simulation ensemble datastore. The example shows
how to read data from the datastore into the MATLAB® workspace, process the data to compute
derived variables, and write the new variables back to the datastore.

The model in this example is a simplified version of the gear-box model described in “Using Simulink
to Generate Fault Data” on page 1-25. Load the Simulink model.

mdl = 'TransmissionCasingSimplified';
open_system(mdl)

For this example, only one fault mode is modeled. The gear-tooth fault is modeled as a disturbance in
the Gear Tooth fault subsystem. The magnitude of the disturbance is controlled by the model
variable ToothFaultGain, where ToothFaultGain = 0 corresponds to no gear tooth fault
(healthy operation).

Generate the Ensemble of Simulated Data

To generate a simulation ensemble datastore of fault data, you use generateSimulationEnsemble
to simulate the model at different values of ToothFaultGain, ranging from -2 to zero. This function
simulates the model once for each entry in an array of Simulink.SimulationInput objects that
you provide. Each simulation generates a separate member of the ensemble. Create such an array,
and use setVariable to assign a tooth-fault gain value for each run.

toothFaultValues  = -2:0.5:0; % 5 ToothFaultGain values

for ct = numel(toothFaultValues):-1:1
    tmp = Simulink.SimulationInput(mdl);
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    tmp = setVariable(tmp,'ToothFaultGain',toothFaultValues(ct));
    simin(ct) = tmp;
end

For this example, the model is already configured to log certain signal values, Vibration and Tacho
(see “Export Signal Data Using Signal Logging” (Simulink)). The generateSimulationEnsemble
function further configures the model to:

• Save logged data to files in the folder you specify
• Use the timetable format for signal logging
• Store each Simulink.SimulationInput object in the saved file with the corresponding logged

data

Specify a location for the generated data. For this example, save the data to a folder called Data
within your current folder. If all the simulations complete without error, the function returns true in
the indicator output, status.

mkdir Data
location = fullfile(pwd,'Data');
[status,E] = generateSimulationEnsemble(simin,location);

[29-Feb-2020 00:57:57] Running simulations...
[29-Feb-2020 00:58:32] Completed 1 of 5 simulation runs
[29-Feb-2020 00:58:56] Completed 2 of 5 simulation runs
[29-Feb-2020 00:59:30] Completed 3 of 5 simulation runs
[29-Feb-2020 01:00:04] Completed 4 of 5 simulation runs
[29-Feb-2020 01:00:32] Completed 5 of 5 simulation runs

status

status = logical
   1

Inside the Data folder, examine one of the files. Each file is a MAT-file containing the following
MATLAB® variables:

• SimulationInput — The Simulink.SimulationInput object that was used to configure the
model for generating the data in the file. You can use this to extract information about the
conditions (such as faulty or healthy) under which this simulation was run.

• logsout — A Dataset object containing all the data that the Simulink model is configured to log.
• PMSignalLogName — The name of the variable that contains the logged data ('logsout' in this

example). The simulationEnsembleDatastore command uses this name to parse the data in
the file.

• SimulationMetadata — Other information about the simulation that generated the data logged
in the file.

Now you can create the simulation ensemble datastore using the generated data. The resulting
simulationEnsembleDatastore object points to the generated data. The object lists the data
variables in the ensemble, and by default all the variables are selected for reading.

ensemble = simulationEnsembleDatastore(location)

ensemble = 
  simulationEnsembleDatastore with properties:
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           DataVariables: [4x1 string]
    IndependentVariables: [0x0 string]
      ConditionVariables: [0x0 string]
       SelectedVariables: [4x1 string]
                ReadSize: 1
              NumMembers: 5
          LastMemberRead: [0x0 string]
                   Files: [5x1 string]

ensemble.DataVariables

ans = 4x1 string
    "SimulationInput"
    "SimulationMetadata"
    "Tacho"
    "Vibration"

ensemble.SelectedVariables

ans = 4x1 string
    "SimulationInput"
    "SimulationMetadata"
    "Tacho"
    "Vibration"

Read Data from Ensemble Members

Suppose that for the analysis you want to do, you need only the Vibration data and the
Simulink.SimulationInput object that describes the conditions under which each member was
simulated. Set ensemble.SelectedVariables to specify the variables you want to read. The read
command then extracts those variables from the first ensemble member, as determined by the
software.

ensemble.SelectedVariables = ["Vibration";"SimulationInput"];
data1 = read(ensemble)

data1=1×2 table
        Vibration               SimulationInput        
    _________________    ______________________________

    {581x1 timetable}    {1x1 Simulink.SimulationInput}

data.Vibration is a cell array containing one timetable row storing the simulation times and the
corresponding vibration signal. You can now process this data as needed. For instance, extract the
vibration data from the table and plot it.

vibdata1 = data1.Vibration{1};
plot(vibdata1.Time,vibdata1.Data)
title('Vibration - First Ensemble Member')
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The LastMemberRead property of the ensemble contains the file name of the most recently read
member. The next time you call read on this ensemble, the software advances to the next member of
the ensemble. (See “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page
1-2 for more information.) Read the selected variables from the next member of the ensemble.

data2 = read(ensemble)

data2=1×2 table
        Vibration               SimulationInput        
    _________________    ______________________________

    {594x1 timetable}    {1x1 Simulink.SimulationInput}

To confirm that data1 and data2 contain data from different ensemble members, examine the values
of the varied model parameter, ToothFaultGain. For each ensemble, this value is stored in the
Variables field of the SimulationInput variable.

SimInput1 = data1.SimulationInput{1};
SimInput1.Variables

ans = 
  Variable with properties:

           Name: 'ToothFaultGain'
          Value: -2
      Workspace: 'global-workspace'
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    Description: ""

SimInput2 = data2.SimulationInput{1};
SimInput2.Variables

ans = 
  Variable with properties:

           Name: 'ToothFaultGain'
          Value: -1.5000
      Workspace: 'global-workspace'
    Description: ""

This result confirms that data1 is from the ensemble with ToothFaultGain = –2, and data2 is
from the ensemble with ToothFaultGain = –1.5.

Append Data to Ensemble Member

Suppose that you want to convert the ToothFaultGain values for each ensemble member into a
binary indicator of whether or not a tooth fault is present. Suppose further that you know from your
experience with the system that tooth-fault gain values less than 0.1 in magnitude are small enough
to be considered healthy operation. Convert the gain value for the ensemble member you just read
into an indicator that is 0 (no fault) for –0.1 < gain < 0.1, and 1 (fault) otherwise.

sT = (abs(SimInput2.Variables.Value) < 0.1);

To append the new tooth-fault indicator to the corresponding ensemble data, first expand the list of
data variables in the ensemble.

ensemble.DataVariables = [ensemble.DataVariables;"ToothFault"];
ensemble.DataVariables

ans = 5x1 string
    "SimulationInput"
    "SimulationMetadata"
    "Tacho"
    "Vibration"
    "ToothFault"

Then, use writeToLastMemberRead to write a value for new variable to the last-read member of the
ensemble.

writeToLastMemberRead(ensemble,'ToothFault',sT);

Batch Process Data from All Ensemble Members

In practice, you want to append the tooth-fault indicator to every member in the ensemble. To do so,
reset the ensemble to its unread state, so that the next read begins at the first ensemble member.
Then, loop through all the ensemble members, computing ToothFault for each member and
appending it.

reset(ensemble);
sT = false; 
while hasdata(ensemble)
    data = read(ensemble);
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    SimInputVars = data.SimulationInput{1}.Variables;
    TFGain = SimInputVars.Value;
    sT = (abs(TFGain) < 0.1);
    writeToLastMemberRead(ensemble,'ToothFault',sT);
end

Finally, designate the new tooth-fault indicator as a condition variable in the ensemble. You can use
this designation to track and refer to variables in the ensemble data that represent conditions under
which the member data was generated.

ensemble.ConditionVariables = "ToothFault";
ensemble.ConditionVariables

ans = 
"ToothFault"

Now, each ensemble member contains the original unprocessed data and an additional variable
indicating the fault condition under which the data was collected. In practice, you might compute and
append other values derived from the raw vibration data, to identify potential condition indicators
that you can use for fault detection and diagnosis. For a more detailed example that shows more ways
to manipulate and analyze data stored in a simulationEnsembleDatastore object, see “Using
Simulink to Generate Fault Data” on page 1-25.

Read Multiple Members at Once

If it is efficient or useful for the processing you want to do, you can configure the ensemble to read
data from multiple members at once. To do so, use the ReadSize property. The read command uses
this property to determine how many ensemble members to read at one time. For example, configure
the ensemble to read two members at a time.

ensemble.ReadSize = 2;

Changing the value of ReadSize also resets the ensemble to its unread state. Thus, the next read
operation reads the first two ensemble members. read returns a table with a number of rows equal
to ReadSize.

ensemble.SelectedVariables = ["Vibration";"ToothFault"];
data3 = read(ensemble)

data3=2×2 table
        Vibration        ToothFault
    _________________    __________

    {581x1 timetable}      false   
    {594x1 timetable}      false   

The LastMemberRead property of the ensemble contains the file names of all ensemble members
that were read in this operation.

ensemble.LastMemberRead

ans = 2x1 string
    "C:\TEMP\Bdoc20a_1326390_8984\ib9D0363\18\tp17f3bab4\predmaint-ex54897023\Data\TransmissionCasingSimplified_log_1.mat"
    "C:\TEMP\Bdoc20a_1326390_8984\ib9D0363\18\tp17f3bab4\predmaint-ex54897023\Data\TransmissionCasingSimplified_log_2.mat"
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When you append data to an ensemble datastore that has ReadSize > 1, you must write to the same
number of ensemble members as you read. Thus, for instance, when ReadSize = 2, supply a two-row
table to writeToLastMemberRead.

See Also
generateSimulationEnsemble | read | simulationEnsembleDatastore |
writeToLastMemberRead

More About
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
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File Ensemble Datastore With Measured Data
In predictive-maintenance algorithm design, you often work with large sets of data collected from
operation of your system under varying conditions. The fileEnsembleDatastore object helps you
manage and interact with such data. For this example, create a fileEnsembleDatastore object
that points to ensemble data on disk. Configure it with functions that read data from and write data to
the ensemble.

Structure of the Data Files

For this example, you have two data files containing healthy operating data from a bearing system,
baseline_01.mat and baseline_02.mat. You also have three data files containing faulty data
from the same system, FaultData_01.mat, FaultData_02.mat, and FaultData_03.mat. In
practice you might have many more data files.

Each of these data files contains one data structure, bearing. Load and examine the data structure
from the first healthy data set.

unzip fileEnsData.zip  % extract compressed files
load baseline_01.mat
bearing

bearing = struct with fields:
      sr: 97656
      gs: [5000x1 double]
    load: 270
    rate: 25

The structure contains a vector of accelerometer data gs, the sample rate sr at which that data was
recorded, and other data variables.

Create and Configure File Ensemble Datastore

To work with this data for predictive maintenance algorithm design, first create a file ensemble
datastore that points to the data files in the current folder.

fensemble = fileEnsembleDatastore(pwd,'.mat');

Before you can interact with data in the ensemble, you must create functions that tell the software
how to process the data files to read variables into the MATLAB® workspace and to write data back
to the files. For this example, use the following provided functions:

• readBearingData — Extract requested variables from a structure, bearing, and other variables
stored in the file. This function also parses the file name for the fault status of the data. The
function returns a table row containing one table variable for each requested variable.

• writeBearingData — Take a structure and write its variables to a data file as individual stored
variables.

Assign these functions to the ReadFcn and WriteToMemberFcn properties of the ensemble
datastore, respectively.

addpath(fullfile(matlabroot,'examples','predmaint','main')) % Make sure functions are on path

fensemble.ReadFcn = @readBearingData;
fensemble.WriteToMemberFcn = @writeBearingData; 
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Finally, set properties of the ensemble to identify data variables and condition variables.

fensemble.DataVariables = ["gs";"sr";"load";"rate"];
fensemble.ConditionVariables = ["label";"file"];

Examine the ensemble. The functions and the variable names are assigned to the appropriate
properties.

fensemble

fensemble = 
  fileEnsembleDatastore with properties:

                 ReadFcn: @readBearingData
        WriteToMemberFcn: @writeBearingData
           DataVariables: [4x1 string]
    IndependentVariables: [0x0 string]
      ConditionVariables: [2x1 string]
       SelectedVariables: [0x0 string]
                ReadSize: 1
              NumMembers: 5
          LastMemberRead: [0x0 string]
                   Files: [5x1 string]

Read Data from Ensemble Member

The functions you assigned tell the read and writeToLastMemberRead commands how to interact
with the data files that make up the ensemble datastore. Thus, when you call the read command, it
uses readBearingData to read all the variables in fensemble.SelectedVariables.

Specify variables to read, and read them from the first member of the ensemble. The read command
reads data from the first ensemble member into a table row in the MATLAB workspace. The software
determines which ensemble member to read first.

fensemble.SelectedVariables = ["file";"label";"gs";"sr";"load";"rate"];
data = read(fensemble)

data=1×6 table
     label           file               gs            sr      load    rate
    ________    ______________    _______________    _____    ____    ____

    "Faulty"    "FaultData_01"    {5000x1 double}    48828     0       25 

Write Data to Ensemble Member

Suppose that you want to analyze the accelerometer data gs by computing its power spectrum, and
then write the power spectrum data back into the ensemble. To do so, first extract the data from the
table and compute the spectrum.

gsdata = data.gs{1};
sr = data.sr;
[pdata,fpdata] = pspectrum(gsdata,sr);
pdata = 10*log10(pdata); % Convert to dB

You can write the frequency vector fpdata and the power spectrum pdata to the data file as
separate variables. First, add the new variables to the list of data variables in the ensemble datastore.
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fensemble.DataVariables = [fensemble.DataVariables;"freq";"spectrum"];
fensemble.DataVariables

ans = 6x1 string
    "gs"
    "sr"
    "load"
    "rate"
    "freq"
    "spectrum"

Next, write the new values to the file corresponding to the last-read ensemble member. When you call
writeToLastMemberRead, it converts the data to a structure and calls
fensemble.WriteToMemberFcn to write the data to the file.

writeToLastMemberRead(fensemble,'freq',fpdata,'spectrum',pdata);

You can add the new variable to fensemble.SelectedVariables or other properties for
identifying variables, as needed.

Calling read again reads the data from the next file in the ensemble datastore and updates the
property fensemble.LastMemberRead.

data = read(fensemble)

data=1×6 table
     label           file               gs            sr      load    rate
    ________    ______________    _______________    _____    ____    ____

    "Faulty"    "FaultData_02"    {5000x1 double}    48828     50      25 

You can confirm that this data is from a different member by the load variable in the table. Here, its
value is 50, while in the previously read member, it was 0.

Batch-Process Data from All Ensemble Members

You can repeat the processing steps to compute and append the spectrum for this ensemble member.
In practice, it is more useful to automate the process of reading, processing, and writing data. To do
so, reset the ensemble datastore to a state in which no data has been read. (The reset operation
does not change fensemble.DataVariables, which contains the two new variables you already
added.) Then loop through the ensemble and perform the read, process, and write steps for each
member.

reset(fensemble)
while hasdata(fensemble)
    data = read(fensemble);
    gsdata = data.gs{1};
    sr = data.sr;
    [pdata,fpdata] = pspectrum(gsdata,sr);
    writeToLastMemberRead(fensemble,'freq',fpdata,'spectrum',pdata);
end

The hasdata command returns false when every member of the ensemble has been read. Now,
each data file in the ensemble includes the spectrum and freq variables derived from the
accelerometer data in that file. You can use techniques like this loop to extract and process data from
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your ensemble files as you develop a predictive-maintenance algorithm. For an example illustrating in
more detail the use of a file ensemble datastore in the algorithm-development process, see “Rolling
Element Bearing Fault Diagnosis” on page 4-7. That example also shows the use of Parallel
Computing Toolbox™ to speed up the processing of a larger ensemble.

To confirm that the derived variables are present in the file ensemble datastore, read them from the
first and second ensemble members. To do so, reset the ensemble again, and add the new variables to
the selected variables. In practice, after you have computed derived values, it can be useful to read
only those values without rereading the unprocessed data, which can take significant space in
memory. For this example, read selected variables that include the new variables but do not include
the unprocessed data, gs.

reset(fensemble)
fensemble.SelectedVariables = ["label","load","freq","spectrum"];
data1 = read(fensemble)

data1=1×4 table
     label      load         freq             spectrum    
    ________    ____    _______________    _______________

    "Faulty"     0      {4096x1 double}    {4096x1 double}

data2 = read(fensemble)

data2=1×4 table
     label      load         freq             spectrum    
    ________    ____    _______________    _______________

    "Faulty"     50     {4096x1 double}    {4096x1 double}

rmpath(fullfile(matlabroot,'examples','predmaint','main')) % Reset path

See Also
fileEnsembleDatastore | read | writeToLastMemberRead

More About
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
• “File Ensemble Datastore Using Data in Text Files” on page 1-21
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File Ensemble Datastore Using Data in Text Files
In predictive maintenance algorithm design, you frequently have system data in a plain text format
such as comma-separated values (CSV). This example shows how to create and use a
fileEnsembleDatastore object to manage an ensemble of data stored in such a format.

Ensemble Data

Extract the compressed data for the example.

unzip fleetdata.zip  % extract compressed files

The ensemble consists of ten files, fleetdata_01.txt, ..., fleetdata_10.txt, each
containing data for one car in a fleet of cars. Each file contains five unlabeled columns of data,
corresponding to daily readings of the following values:

• Odometer reading at the end of the day, in miles
• Fuel consumed that day, in gallons
• Maximum rpm for the day
• Maximum engine temperature for the day, in degrees Celsius
• Engine light status at the end of the day (0 = off, 1 = on)

Each file contains data for between about 80 and about 120 days of operation. The data sets were
artificially manufactured for this example and do not correspond to real fleet data.

Configure the Ensemble Datastore

Create a fileEnsembleDatastore object to manage the data.

location = pwd;
extension = '.txt';
fensemble = fileEnsembleDatastore(location,extension);

Configure the ensemble datastore to use the provided function readFleetData.m to read data from
the files.

addpath(fullfile(matlabroot,'examples','predmaint','main')) % Make sure functions are on path
fensemble.ReadFcn = @readFleetData;

Because the columns in the data files are unlabeled, the function readFleetData attaches a
predefined label to the corresponding data. Configure the ensemble data variables to match the
labels defined in readFleetData.

fensemble.DataVariables = ["Odometer";"FuelConsump";"MaxRPM";"MaxTemp";"EngineLight"];

The function readFleetData also parses the file name to return an ID of the car from which the
data was collected, a number from 1 through 10. This ID is the ensemble independent variable.

fensemble.IndependentVariables = "ID";

Specify all data variables and the independent variable as selected variables for reading from the
ensemble datastore.

fensemble.SelectedVariables = [fensemble.IndependentVariables;fensemble.DataVariables];
fensemble
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fensemble = 
  fileEnsembleDatastore with properties:

                 ReadFcn: @readFleetData
        WriteToMemberFcn: []
           DataVariables: [5x1 string]
    IndependentVariables: "ID"
      ConditionVariables: [0x0 string]
       SelectedVariables: [6x1 string]
                ReadSize: 1
              NumMembers: 10
          LastMemberRead: [0x0 string]
                   Files: [10x1 string]

Read Ensemble Data

When you call read on the ensemble datastore, it uses readFleetData to read the selected
variables from the first ensemble member.

data1 = read(fensemble)

data1=1×6 table
    ID        Odometer            FuelConsump            MaxRPM               MaxTemp            EngineLight   
    __    _________________    _________________    _________________    _________________    _________________

    1     {120x1 timetable}    {120x1 timetable}    {120x1 timetable}    {120x1 timetable}    {120x1 timetable}

Examine and plot the odometer data.

odo1 = data1.Odometer{1}

odo1=120×1 timetable
     Time       Var1 
    _______    ______

    0 days     180.04
    1 day      266.76
    2 days     396.01
    3 days     535.19
    4 days     574.31
    5 days     714.82
    6 days     714.82
    7 days     821.44
    8 days     1030.5
    9 days     1213.4
    10 days    1303.4
    11 days    1416.9
    12 days    1513.5
    13 days    1513.5
    14 days    1697.1
    15 days    1804.6
      ⋮

plot(odo1.Time,odo1.Var1)

1 Manage System Data

1-22



Compute the average gas mileage for this member of the fleet. This value is the odometer reading on
the last day, divided by the total fuel consumed.

fuelConsump1 = data1.FuelConsump{1}.Var1;
totalConsump1 = sum(fuelConsump1);
totalMiles1 = odo1.Var1(end);
mpg1 = totalMiles1/totalConsump1

mpg1 = 22.3086

Batch-Process Data from All Ensemble Members

If you call read again, it reads data from the next ensemble member and advances the
LastMemberRead property of fensemble to reflect the file name of that ensemble. You can repeat
the processing steps to compute the average gas mileage for that member. In practice, it is more
useful to automate the process of reading and processing the data. To do so, reset the ensemble
datastore to a state in which no data has been read. Then loop through the ensemble and perform the
read and process steps for each member, returning a table that contains each car's ID and average
gas mileage. (If you have Parallel Computing Toolbox™, you can use it to speed up the processing of
larger data ensembles.)

reset(fensemble)
mpgData = zeros(10,2);    % preallocate array for 10 ensemble members
ct = 1;
while hasdata(fensemble)
    data = read(fensemble);
    odo = data.Odometer{1}.Var1;
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    fuelConsump = data.FuelConsump{1}.Var1;
    totalConsump = sum(fuelConsump);
    mpg = odo(end)/totalConsump1;
    ID = data.ID;
    mpgData(ct,:) = [ID,mpg];
    ct = ct + 1;
end
mpgTable = array2table(mpgData,'VariableNames',{'ID','mpg'})

mpgTable=10×2 table
    ID     mpg  
    __    ______

     1    22.309
     2    19.327
     3    20.816
     4    27.464
     5    18.848
     6    22.517
     7    27.018
     8    27.284
     9    17.149
    10     26.37

See Also
fileEnsembleDatastore | read

More About
• “File Ensemble Datastore With Measured Data” on page 1-17
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
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Using Simulink to Generate Fault Data
This example shows how to use a Simulink model to generate fault and healthy data. The fault and
healthy data is used to develop a condition monitoring algorithm. The example uses a transmission
system and models a gear tooth fault, a sensor drift fault and shaft wear fault.

Transmission System Model

The transmission casing model uses Simscape Driveline blocks to model a simple transmission
system. The transmission system consists of a torque drive, drive shaft, clutch, and high and low
gears connected to an output shaft.

mdl = 'pdmTransmissionCasing';
open_system(mdl)

The transmission system includes a vibration sensor that is monitoring casing vibrations. The casing
model translates the shaft angular displacement to a linear displacement on the casing. The casing is
modelled as a mass spring damper system and the vibration (casing acceleration) is measured from
the casing.

open_system([mdl '/Casing'])

 Using Simulink to Generate Fault Data

1-25



Fault Modelling

The transmission system includes fault models for vibration sensor drift, gear tooth fault, and shaft
wear. The sensor drift fault is easily modeled by introducing an offset in the sensor model. The offset
is controlled by the model variable SDrift, note that SDrift=0 implies no sensor fault.

open_system([mdl '/Vibration sensor with drift'])

The shaft wear fault is modeled by a variant subsystem. In this case the subsystem variants change
the shaft damping but the variant subsystem could be used to completely change the shaft model
implementation. The selected variant is controlled by the model variable ShaftWear, note that
ShaftWear=0 implies no shaft fault.

open_system([mdl '/Shaft'])
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open_system([mdl,'/Shaft/Output Shaft'])

The gear tooth fault is modelled by injecting a disturbance torque at a fixed position in the rotation of
the drive shaft. The shaft position is measured in radians and when the shaft position is within a small
window around 0 a disturbance force is applied to the shaft. The magnitude of the disturbance is
controlled by the model variable ToothFaultGain, note that ToothFaultGain=0 implies no gear
tooth fault.
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Simulating Fault and Healthy Data

The transmission model is configured with variables that control the presence and severity of the
three different fault types, sensor drift, gear tooth, and shaft wear. By varying the model variables,
SDrift, ToothFaultGain, and ShaftWear, you can create vibration data for the different fault
types. Use an array of Simulink.SimulationInput objects to define a number of different
simulation scenarios. For example, choose an array of values for each of the model variables and then
use the ndgrid function to create a Simulink.SimulationInput for each combination of model
variable values.

toothFaultArray = -2:2/10:0; % Tooth fault gain values
sensorDriftArray = -1:0.5:1; % Sensor drift offset values
shaftWearArray = [0 -1];       % Variants available for drive shaft conditions

% Create an n-dimensional array with combinations of all values
[toothFaultValues,sensorDriftValues,shaftWearValues] = ...
    ndgrid(toothFaultArray,sensorDriftArray,shaftWearArray);

for ct = numel(toothFaultValues):-1:1
    % Create a Simulink.SimulationInput for each combination of values
    siminput = Simulink.SimulationInput(mdl);
    
    % Modify model parameters
    siminput = setVariable(siminput,'ToothFaultGain',toothFaultValues(ct));
    siminput = setVariable(siminput,'SDrift',sensorDriftValues(ct));
    siminput = setVariable(siminput,'ShaftWear',shaftWearValues(ct));
    
    % Collect the simulation input in an array
    gridSimulationInput(ct) = siminput;
end

Similarly create combinations of random values for each model variable. Make sure to include the 0
value so that there are combinations where only subsets of the three fault types are represented.

rng('default'); % Reset random seed for reproducibility
toothFaultArray = [0 -rand(1,6)];    % Tooth fault gain values
sensorDriftArray = [0 randn(1,6)/8]; % Sensor drift offset values
shaftWearArray = [0 -1];               % Variants available for drive shaft conditions
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%Create an n-dimensional array with combinations of all values
[toothFaultValues,sensorDriftValues,shaftWearValues] = ...
    ndgrid(toothFaultArray,sensorDriftArray,shaftWearArray);

for ct=numel(toothFaultValues):-1:1
    % Create a Simulink.SimulationInput for each combination of values
    siminput = Simulink.SimulationInput(mdl);
    
    % Modify model parameters
    siminput = setVariable(siminput,'ToothFaultGain',toothFaultValues(ct));
    siminput = setVariable(siminput,'SDrift',sensorDriftValues(ct));
    siminput = setVariable(siminput,'ShaftWear',shaftWearValues(ct));
    
    % Collect the simulation input in an array
    randomSimulationInput(ct) = siminput;
end

With the array of Simulink.SimulationInput objects defined use the
generateSimulationEnsemble function to run the simulations. The
generateSimulationEnsemble function configures the model to save logged data to file, use the
timetable format for signal logging and store the Simulink.SimulationInput objects in the saved
file. The generateSimulationEnsemble function returns a status flag indicating whether the
simulation completed successfully.

The code above created 110 simulation inputs from the gridded variable values and 98 simulation
inputs from the random variable values giving 208 total simulations. Running these 208 simulations
in parallel takes around ten minutes on a standard desktop and generates around 10GB of data, an
option to only run the first 10 simulations is provided for convenience.

% Run the simulations and create an ensemble to manage the simulation results
if ~exist(fullfile(pwd,'Data'),'dir')
    mkdir(fullfile(pwd,'Data')) % Create directory to store results
end
runAll = true;
if runAll
   [ok,e] = generateSimulationEnsemble([gridSimulationInput, randomSimulationInput], ...
        fullfile(pwd,'Data'),'UseParallel', true);
else
    [ok,e] = generateSimulationEnsemble(gridSimulationInput(1:10), fullfile(pwd,'Data')); %#ok<*UNRCH>
end

[28-Feb-2018 13:17:31] Checking for availability of parallel pool...
[28-Feb-2018 13:17:37] Loading Simulink on parallel workers...
Analyzing and transferring files to the workers ...done.
[28-Feb-2018 13:17:56] Configuring simulation cache folder on parallel workers...
[28-Feb-2018 13:17:57] Running SetupFcn on parallel workers...
[28-Feb-2018 13:18:01] Loading model on parallel workers...
[28-Feb-2018 13:18:02] Transferring base workspace variables used in the model to parallel workers...
[28-Feb-2018 13:18:07] Running simulations...
[28-Feb-2018 13:18:29] Completed 1 of 208 simulation runs
[28-Feb-2018 13:18:29] Completed 2 of 208 simulation runs
[28-Feb-2018 13:18:30] Completed 3 of 208 simulation runs
...
[28-Feb-2018 13:24:22] Completed 204 of 208 simulation runs
[28-Feb-2018 13:24:28] Completed 205 of 208 simulation runs
[28-Feb-2018 13:24:28] Completed 206 of 208 simulation runs
[28-Feb-2018 13:24:28] Completed 207 of 208 simulation runs
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[28-Feb-2018 13:24:29] Completed 208 of 208 simulation runs
[28-Feb-2018 13:24:33] Cleaning up parallel workers...

The generateSimulationEnsemble ran and logged the simulation results. Create a simulation
ensemble to process and analyze the simulation results using the simulationEnsembleDatastore
command.

ens = simulationEnsembleDatastore(fullfile(pwd,'Data'));

Processing the Simulation Results

The simulationEnsembleDatastore command created an ensemble object that points to the
simulation results. Use the ensemble object to prepare and analyze the data in each member of the
ensemble. The ensemble object lists the data variables in the ensemble and by default all the
variables are selected for reading.

ens

ens = 
  simulationEnsembleDatastore with properties:

           DataVariables: [6×1 string]
    IndependentVariables: [0×0 string]
      ConditionVariables: [0×0 string]
       SelectedVariables: [6×1 string]
              NumMembers: 208
          LastMemberRead: [0×0 string]

ens.SelectedVariables

ans = 6×1 string array
    "SimulationInput"
    "SimulationMetadata"
    "Tacho"
    "Vibration"
    "xFinal"
    "xout"

For analysis only read the Vibration and Tacho signals and the Simulink.SimulationInput.
The Simulink.SimulationInput has the model variable values used for simulation and is used to
create fault labels for the ensemble members. Use the ensemble read command to get the ensemble
member data.

ens.SelectedVariables = ["Vibration" "Tacho" "SimulationInput"];
data = read(ens)

data=1×3 table
         Vibration                Tacho                  SimulationInput        
    ___________________    ___________________    ______________________________

    [40272×1 timetable]    [40272×1 timetable]    [1×1 Simulink.SimulationInput]

Extract the vibration signal from the returned data and plot it.

vibration = data.Vibration{1};
plot(vibration.Time,vibration.Data)
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title('Vibration')
ylabel('Acceleration')

The first 10 seconds of the simulation contains data where the transmission system is starting up; for
analysis discard this data.

idx = vibration.Time >= seconds(10);
vibration = vibration(idx,:);
vibration.Time = vibration.Time - vibration.Time(1);

The Tacho signal contains pulses for the rotations of the drive and load shafts but analysis, and
specifically time synchronous averaging, requires the times of shaft rotations. The following code
discards the first 10 seconds of the Tacho data and finds the shaft rotation times in tachoPulses.

tacho = data.Tacho{1};
idx = tacho.Time >= seconds(10);
tacho = tacho(idx,:);
plot(tacho.Time,tacho.Data)
title('Tacho pulses')
legend('Drive shaft','Load shaft') % Load shaft rotates more slowly than drive shaft
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idx = diff(tacho.Data(:,2)) > 0.5;
tachoPulses = tacho.Time(find(idx)+1)-tacho.Time(1)

tachoPulses = 8×1 duration array
   2.8543 sec
   6.6508 sec
   10.447 sec
   14.244 sec
    18.04 sec
   21.837 sec
   25.634 sec
    29.43 sec

The Simulink.SimulationInput.Variables property contains the values of the fault parameters
used for the simulation, these values allow us to create fault labels for each ensemble member.

vars = data.SimulationInput{1}.Variables;
idx = strcmp({vars.Name},'SDrift');
if any(idx)
    sF = abs(vars(idx).Value) > 0.01; % Small drift values are not faults
else
    sF = false;
end
idx = strcmp({vars.Name},'ShaftWear');
if any(idx)
    sV = vars(idx).Value < 0;
else
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    sV = false;
end
if any(idx)
    idx = strcmp({vars.Name},'ToothFaultGain');
    sT = abs(vars(idx).Value) < 0.1; % Small tooth fault values are not faults
else
    sT = false
end
faultCode = sF + 2*sV + 4*sT; % A fault code to capture different fault conditions

The processed vibration and tacho signals and the fault labels are added to the ensemble to be used
later.

sdata = table({vibration},{tachoPulses},sF,sV,sT,faultCode, ...
    'VariableNames',{'Vibration','TachoPulses','SensorDrift','ShaftWear','ToothFault','FaultCode'})  

sdata=1×6 table
         Vibration          TachoPulses      SensorDrift    ShaftWear    ToothFault    FaultCode
    ___________________    ______________    ___________    _________    __________    _________

    [30106×1 timetable]    [8×1 duration]       true          false        false           1    

ens.DataVariables = [ens.DataVariables; "TachoPulses"];

The ensemble ConditionVariables property can be used to identify the variables in the ensemble
that contain condition or fault label data. Set the property to contain the newly created fault labels.

ens.ConditionVariables = ["SensorDrift","ShaftWear","ToothFault","FaultCode"];

The code above was used to process one member of the ensemble. To process all the ensemble
members the code above was converted to the function prepareData and using the ensemble
hasdata command a loop is used to apply prepareData to all the ensemble members. The ensemble
members can be processed in parallel by partitioning the ensemble and processing the ensemble
partitions in parallel.

reset(ens)
runLocal = false;
if runLocal
    % Process each member in the ensemble
    while hasdata(ens)
        data = read(ens);
        addData = prepareData(data);
        writeToLastMemberRead(ens,addData)
    end
else
    % Split the ensemble into partitions and process each partition in parallel
    n = numpartitions(ens,gcp);
    parfor ct = 1:n
        subens = partition(ens,n,ct);
        while hasdata(subens)
            data = read(subens);
            addData = prepareData(data);
            writeToLastMemberRead(subens,addData)
        end
    end    
end
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Plot the vibration signal of every 10th member of the ensemble using the hasdata and read
commands to extract the vibration signal.

reset(ens)
ens.SelectedVariables = "Vibration";
figure, 
ct = 1;
while hasdata(ens)
    data = read(ens);
    if mod(ct,10) == 0
        vibration = data.Vibration{1};
        plot(vibration.Time,vibration.Data)
        hold on
    end
    ct = ct + 1;
end
hold off
title('Vibration signals')
ylabel('Acceleration')

Analyzing the Simulation Data

Now that the data has been cleaned and pre-processed the data is ready for extracting features to
determine the features to use to classify the different faults types. First configure the ensemble so
that it only returns the processed data.

ens.SelectedVariables = ["Vibration","TachoPulses"];
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For each member in the ensemble compute a number of time and spectrum based features. These
include signal statistics such as signal mean, variance, peak to peak, non-linear signal characteristics
such as approximate entropy and Lyapunov exponent, and spectral features such as the peak
frequency of the time synchronous average of the vibration signal, and the power of the time
synchronous average envelope signal. The analyzeData function contains a full list of the extracted
features. By way of example consider computing the spectrum of the time synchronous averaged
vibration signal.

reset(ens)
data = read(ens)

data=1×2 table
         Vibration          TachoPulses  
    ___________________    ______________

    [30106×1 timetable]    [8×1 duration]

vibration = data.Vibration{1};

% Interpolate the Vibration signal onto periodic time base suitable for fft analysis
np = 2^floor(log(height(vibration))/log(2));
dt = vibration.Time(end)/(np-1);
tv = 0:dt:vibration.Time(end);
y = retime(vibration,tv,'linear');

% Compute the time synchronous average of the vibration signal
tp = seconds(data.TachoPulses{1});
vibrationTSA = tsa(y,tp);
figure
plot(vibrationTSA.ttTime,vibrationTSA.tsa)
title('Vibration time synchronous average')
ylabel('Acceleration')
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% Compute the spectrum of the time synchronous average
np = numel(vibrationTSA);
f = fft(vibrationTSA.tsa.*hamming(np))/np;
frTSA = f(1:floor(np/2)+1);            % TSA frequency response
wTSA = (0:np/2)/np*(2*pi/seconds(dt)); % TSA spectrum frequencies
mTSA = abs(frTSA);                     % TSA spectrum magnitudes
figure
semilogx(wTSA,20*log10(mTSA))
title('Vibration spectrum')
xlabel('rad/s')
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The frequency that corresponds to the peak magnitude could turn out to be a feature that is useful for
classifying the different fault types. The code below computes the features mentioned above for all
the ensemble members (running this analysis make take around thirty minutes on a standard
desktop, optional code to run the analysis in parallel using the ensemble partition command is
provided). The names of the features are added to the ensemble data variables property before
calling writeToLastMemberRead to add the computed features to each ensemble member.

reset(ens)
ens.DataVariables = [ens.DataVariables; ...
    "SigMean";"SigMedian";"SigRMS";"SigVar";"SigPeak";"SigPeak2Peak";"SigSkewness"; ...
    "SigKurtosis";"SigCrestFactor";"SigMAD";"SigRangeCumSum";"SigCorrDimension";"SigApproxEntropy"; ...
    "SigLyapExponent";"PeakFreq";"HighFreqPower";"EnvPower";"PeakSpecKurtosis"];
if runLocal
    while hasdata(ens)
        data = read(ens);
        addData = analyzeData(data);
        writeToLastMemberRead(ens,addData);
    end
else
    % Split the ensemble into partitions and analyze each partition in parallel
    n = numpartitions(ens,gcp);
    parfor ct = 1:n
        subens = partition(ens,n,ct);
        while hasdata(subens)
            data = read(subens);
            addData = analyzeData(data);
            writeToLastMemberRead(subens,addData)
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        end
    end
end

Selecting Features for Fault Classification

The features computed above are used to build a classifier to classify the different fault conditions.
First configure the ensemble to read only the derived features and the fault labels.

featureVariables = analyzeData('GetFeatureNames');
ens.DataVariables = [ens.DataVariables; featureVariables];
ens.SelectedVariables = [featureVariables; ens.ConditionVariables];
reset(ens)

Gather the feature data for all the ensemble members into one table.

featureData = gather(tall(ens))

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 min
Evaluation completed in 1.8167 min

featureData=208×22 table
    SigMean     SigMedian    SigRMS     SigVar     SigPeak    SigPeak2Peak    SigSkewness    SigKurtosis    SigCrestFactor    SigMAD     SigRangeCumSum    SigCorrDimension    SigApproxEntropy    SigLyapExponent    PeakFreq    HighFreqPower     EnvPower     PeakSpecKurtosis    SensorDrift    ShaftWear    ToothFault    FaultCode
    ________    _________    _______    _______    _______    ____________    ___________    ___________    ______________    _______    ______________    ________________    ________________    _______________    ________    _____________    __________    ________________    ___________    _________    __________    _________

    -0.94876      -0.9722     1.3726    0.98387    0.81571       3.6314        -0.041525       2.2666           2.0514         0.8081         28562             1.1427             0.031601            79.531               0      6.7528e-06      3.2349e-07         162.13            true          false        false           1    
    -0.97537     -0.98958     1.3937    0.99105    0.81571       3.6314        -0.023777       2.2598           2.0203        0.81017         29418             1.1362              0.03786            70.339               0      5.0788e-08      9.1568e-08         226.12            true          false        false           1    
      1.0502       1.0267     1.4449    0.98491     2.8157       3.6314         -0.04162       2.2658           1.9487        0.80853         31710             1.1479             0.031586            125.18               0      6.7416e-06      3.1343e-07         162.13            true          true         false           3    
      1.0227       1.0045     1.4288    0.99553     2.8157       3.6314        -0.016356       2.2483           1.9707        0.81324         30984             1.1472             0.032109            112.52               0      4.9934e-06      2.5787e-07         162.13            true          true         false           3    
      1.0123       1.0024     1.4202    0.99233     2.8157       3.6314        -0.014701       2.2542           1.9826        0.81156         30661              1.147             0.032891            109.02               0       3.619e-06      2.2397e-07         230.39            true          true         false           3    
      1.0275       1.0102     1.4338     1.0001     2.8157       3.6314         -0.02659       2.2439           1.9638        0.81589         31102             1.0975             0.033449            64.499               0      2.5493e-06      1.9224e-07         230.39            true          true         false           3    
      1.0464       1.0275     1.4477     1.0011     2.8157       3.6314        -0.042849       2.2455           1.9449        0.81595         31665             1.1417             0.034182            98.759               0      1.7313e-06      1.6263e-07         230.39            true          true         false           3    
      1.0459       1.0257     1.4402    0.98047     2.8157       3.6314        -0.035405       2.2757            1.955        0.80583         31554             1.1345             0.035323            44.304               0      1.1115e-06      1.2807e-07         230.39            true          true         false           3    
      1.0263       1.0068     1.4271    0.98341     2.8157       3.6314          -0.0165       2.2726            1.973        0.80624         30951             1.1515              0.03592            125.28               0      6.5947e-07       1.208e-07         162.13            true          true         false           3    
      1.0103       1.0014     1.4183    0.99091     2.8157       3.6314        -0.011667       2.2614           1.9853        0.80987         30465             1.0619             0.036514            17.093               0      5.2297e-07      1.0704e-07         230.39            true          true         false           3    
      1.0129       1.0023      1.419    0.98764     2.8157       3.6314        -0.010969        2.266           1.9843        0.80866         30523             1.1371             0.037234            84.568               0      2.1605e-07       8.774e-08         230.39            true          true         false           3    
      1.0251       1.0104     1.4291     0.9917     2.8157       3.6314        -0.023609       2.2588           1.9702        0.81048         30896             1.1261             0.037836            98.463               0      5.0275e-08      9.0495e-08         230.39            true          true         false           3    
    -0.97301     -0.99243     1.3928    0.99326    0.81571       3.6314        -0.012569       2.2589           2.0216        0.81095         29351             1.1277             0.038507            42.887               0      1.1383e-11      8.3005e-08         230.39            true          false        true            5    
      1.0277       1.0084     1.4315    0.99314     2.8157       3.6314        -0.013542       2.2598           1.9669        0.81084         30963             1.1486             0.038524            99.426               0      1.1346e-11       8.353e-08         226.12            true          true         true            7    
    0.026994    0.0075709    0.99697    0.99326     1.8157       3.6314        -0.012569       2.2589           1.8212        0.81095        1083.8             1.1277             0.038507            44.448           9.998      4.9172e-12      8.3005e-08         230.39            false         false        true            4    
    0.026943    0.0084639    0.99297    0.98531     1.8157       3.6314        -0.018182       2.2686           1.8286        0.80732        1466.6             1.1368             0.035822             93.95          1.8618      6.8872e-07      1.2185e-07         230.39            false         false        false           0    
      ⋮

Consider the sensor drift fault. Use the fscnca command with all the features computed above as
predictors and the sensor drift fault label (a true false value) as the response. The fscnca command
returns weights for each feature and features with higher weights have higher importance in
predicting the response. For the sensor drift fault the weights indicate that two features are
significant predictors (the signal cumulative sum range and the peak frequency of the spectral
kurtosis) and the remaining features have little impact.

idxResponse = strcmp(featureData.Properties.VariableNames,'SensorDrift');
idxLastFeature = find(idxResponse)-1; % Index of last feature to use as a potential predictor
featureAnalysis = fscnca(featureData{:,1:idxLastFeature},featureData.SensorDrift); 
featureAnalysis.FeatureWeights

ans = 18×1
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    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
      ⋮

idxSelectedFeature = featureAnalysis.FeatureWeights > 0.1;
classifySD = [featureData(:,idxSelectedFeature), featureData(:,idxResponse)]

classifySD=208×3 table
    SigRangeCumSum    PeakSpecKurtosis    SensorDrift
    ______________    ________________    ___________

         28562             162.13            true    
         29418             226.12            true    
         31710             162.13            true    
         30984             162.13            true    
         30661             230.39            true    
         31102             230.39            true    
         31665             230.39            true    
         31554             230.39            true    
         30951             162.13            true    
         30465             230.39            true    
         30523             230.39            true    
         30896             230.39            true    
         29351             230.39            true    
         30963             226.12            true    
        1083.8             230.39            false   
        1466.6             230.39            false   
      ⋮

A grouped histogram of the cumulative sum range gives us insight into why this feature is a
significant predictor for the sensor drift fault.

figure
histogram(classifySD.SigRangeCumSum(classifySD.SensorDrift),'BinWidth',5e3)
xlabel('Signal cumulative sum range')
ylabel('Count')
hold on
histogram(classifySD.SigRangeCumSum(~classifySD.SensorDrift),'BinWidth',5e3)
hold off
legend('Sensor drift fault','No sensor drift fault')
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The histogram plot shows that the signal cumulative sum range is a good featured for detecting
sensor drift faults though an additional feature is probably needed as there may be false positives
when the signal cumulative sum range is below 0.5 if just the signal cumulative sum range is used to
classify sensor drift.

Consider the shaft wear fault. In this case the fscnca function indicates that there are 3 features
that are significant predictors for the fault (the signal Lyapunov exponent, peak frequency, and the
peak frequency in the spectral kurtosis), choose these to classify the shaft wear fault.

idxResponse = strcmp(featureData.Properties.VariableNames,'ShaftWear');
featureAnalysis = fscnca(featureData{:,1:idxLastFeature},featureData.ShaftWear);
featureAnalysis.FeatureWeights

ans = 18×1

    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
      ⋮
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idxSelectedFeature = featureAnalysis.FeatureWeights > 0.1;
classifySW = [featureData(:,idxSelectedFeature), featureData(:,idxResponse)]

classifySW=208×4 table
    SigLyapExponent    PeakFreq    PeakSpecKurtosis    ShaftWear
    _______________    ________    ________________    _________

        79.531               0          162.13           false  
        70.339               0          226.12           false  
        125.18               0          162.13           true   
        112.52               0          162.13           true   
        109.02               0          230.39           true   
        64.499               0          230.39           true   
        98.759               0          230.39           true   
        44.304               0          230.39           true   
        125.28               0          162.13           true   
        17.093               0          230.39           true   
        84.568               0          230.39           true   
        98.463               0          230.39           true   
        42.887               0          230.39           false  
        99.426               0          226.12           true   
        44.448           9.998          230.39           false  
         93.95          1.8618          230.39           false  
      ⋮

The grouped histogram for the signal Lyapunov exponent shows why that feature alone is not a good
predictor.

figure
histogram(classifySW.SigLyapExponent(classifySW.ShaftWear))
xlabel('Signal lyapunov exponent')
ylabel('Count')
hold on
histogram(classifySW.SigLyapExponent(~classifySW.ShaftWear))
hold off
legend('Shaft wear fault','No shaft wear fault')

 Using Simulink to Generate Fault Data

1-41



The shaft wear feature selection indicates multiple features are needed to classify the shaft wear
fault, the grouped histogram confirms this as the most significant feature (in this case the Lyapunov
exponent) has a similar distribution for both faulty and fault free scenarios indicating that more
features are needed to correctly classify this fault.

Finally consider the tooth fault, the fscnca function indicates that there are 3 features primary that
are significant predictors for the fault (the signal cumulative sum range, the signal Lyapunov
exponent and the peak frequency in the spectral kurtosis). Choosing those 3 features to classify the
tooth fault results in a classifier that has poor performance. Instead, use the 6 most important
features.

idxResponse = strcmp(featureData.Properties.VariableNames,'ToothFault');
featureAnalysis = fscnca(featureData{:,1:idxLastFeature},featureData.ToothFault); 
[~,idxSelectedFeature] = sort(featureAnalysis.FeatureWeights);
classifyTF = [featureData(:,idxSelectedFeature(end-5:end)), featureData(:,idxResponse)]

classifyTF=208×7 table
    PeakFreq    SigPeak    SigCorrDimension    SigLyapExponent    PeakSpecKurtosis    SigRangeCumSum    ToothFault
    ________    _______    ________________    _______________    ________________    ______________    __________

          0     0.81571         1.1427             79.531              162.13              28562          false   
          0     0.81571         1.1362             70.339              226.12              29418          false   
          0      2.8157         1.1479             125.18              162.13              31710          false   
          0      2.8157         1.1472             112.52              162.13              30984          false   
          0      2.8157          1.147             109.02              230.39              30661          false   
          0      2.8157         1.0975             64.499              230.39              31102          false   
          0      2.8157         1.1417             98.759              230.39              31665          false   
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          0      2.8157         1.1345             44.304              230.39              31554          false   
          0      2.8157         1.1515             125.28              162.13              30951          false   
          0      2.8157         1.0619             17.093              230.39              30465          false   
          0      2.8157         1.1371             84.568              230.39              30523          false   
          0      2.8157         1.1261             98.463              230.39              30896          false   
          0     0.81571         1.1277             42.887              230.39              29351          true    
          0      2.8157         1.1486             99.426              226.12              30963          true    
      9.998      1.8157         1.1277             44.448              230.39             1083.8          true    
     1.8618      1.8157         1.1368              93.95              230.39             1466.6          false   
      ⋮

figure
histogram(classifyTF.SigRangeCumSum(classifyTF.ToothFault))
xlabel('Signal cumulative sum range')
ylabel('Count')
hold on
histogram(classifyTF.SigRangeCumSum(~classifyTF.ToothFault))
hold off
legend('Gear tooth fault','No gear tooth fault')

Using the above results a polynomial svm to classify gear tooth faults. Split the feature table into
members that are used for training and members for testing and validation. Use the training
members to create a svm classifier using the fitcsvm command.

rng('default') % For reproducibility
cvp = cvpartition(size(classifyTF,1),'KFold',5); % Randomly partition the data for training and validation 
classifierTF = fitcsvm(...
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    classifyTF(cvp.training(1),1:end-1), ...
    classifyTF(cvp.training(1),end), ...
    'KernelFunction','polynomial', ...
    'PolynomialOrder',2, ...
    'KernelScale','auto', ...
    'BoxConstraint',1, ...
    'Standardize',true, ...
    'ClassNames',[false; true]);

Use the classifier to classify the test points using the predict command and check the performance
of the predictions using a confusion matrix.

% Use the classifier on the test validation data to evaluate performance
actualValue = classifyTF{cvp.test(1),end};
predictedValue = predict(classifierTF, classifyTF(cvp.test(1),1:end-1));

% Check performance by computing and plotting the confusion matrix
confdata = confusionmat(actualValue,predictedValue);
h = heatmap(confdata, ...
    'YLabel', 'Actual gear tooth fault', ...
    'YDisplayLabels', {'False','True'}, ...
    'XLabel', 'Predicted gear tooth fault', ...
    'XDisplayLabels', {'False','True'}, ...
    'ColorbarVisible','off');   
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The confusion matrix indicates that the classifier correctly classifies all non-fault conditions but
incorrectly classifies one expected fault condition as not being a fault. Increasing the number of
features used in the classifier can help improve the performance further.

Summary

This example walked through the workflow for generating fault data from Simulink, using a
simulation ensemble to clean up the simulation data and extract features. The extracted features
were then used to build classifiers for the different fault types.

See Also
simulationEnsembleDatastore

More About
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
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Multi-Class Fault Detection Using Simulated Data
This example shows how to use a Simulink model to generate fault and healthy data. The data is used
to develop a multi-class classifier to detect different combinations of faults. The example uses a
triplex reciprocating pump model and includes leak, blocking, and bearing faults.

Setup the Model

This example uses many supporting files that are stored in a zip file. Unzip the file to get access to
the supporting files, load the model parameters, and create the reciprocating pump library.

if ~exist('+mech_hydro_forcesPS','dir')
    unzip('pdmRecipPump_supportingfiles.zip')
end

% Load Parameters
pdmRecipPump_Parameters %Pump
CAT_Pump_1051_DataFile_imported %CAD

% Create Simscape library if needed
if exist('mech_hydro_forcesPS_Lib','file')~=4
    ssc_build mech_hydro_forcesPS
end

Reciprocating Pump Model

The reciprocating pump consists of an electric motor, the pump housing, pump crank and pump
plungers.

mdl = 'pdmRecipPump';
open_system(mdl)

open_system([mdl,'/Pump'])
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The pump model is configured to model three types of faults; cylinder leaks, blocked inlet, and
increased bearing friction. These faults are parameterized as workspace variables and configured
through the pump block dialog.
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Simulating Fault and Healthy Data

For each of the three fault types create an array of values that represent the fault severity, ranging
from no fault to a significant fault.

% Define fault parameter variations
numParValues = 10;
leak_area_set_factor = linspace(0.00,0.036,numParValues);
leak_area_set = leak_area_set_factor*TRP_Par.Check_Valve.In.Max_Area;
leak_area_set = max(leak_area_set,1e-9); % Leakage area cannot be 0
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blockinfactor_set = linspace(0.8,0.53,numParValues);
bearingfactor_set = linspace(0,6e-4,numParValues);

The pump model is configured to include noise, thus running the model with the same fault
parameter values will result in different simulation outputs. This is useful for developing a classifier
as it means there can be multiple simulation results for the same fault condition and severity. To
configure simulations for such results, create vectors of fault parameter values where the values
represent no faults, a single fault, combinations of two faults, and combinations of three faults. For
each group (no fault, single fault, etc.) create 125 combinations of fault values from the fault
parameter values defined above. This gives a total of 1000 combinations of fault parameter values.

nPerGroup = 125; % Number of elements in each fault group
    
% No fault simulations
leakArea = repmat(leak_area_set(1),nPerGroup,1);
blockingFactor = repmat(blockinfactor_set(1),nPerGroup,1);
bearingFactor = repmat(bearingfactor_set(1),nPerGroup,1);

% Single fault simulations
idx = ceil(10*rand(nPerGroup,1));
leakArea = [leakArea; leak_area_set(idx)'];
blockingFactor = [blockingFactor;repmat(blockinfactor_set(1),nPerGroup,1)];
bearingFactor = [bearingFactor;repmat(bearingfactor_set(1),nPerGroup,1)];
idx = ceil(10*rand(nPerGroup,1));
leakArea = [leakArea; repmat(leak_area_set(1),nPerGroup,1)];
blockingFactor = [blockingFactor;blockinfactor_set(idx)'];
bearingFactor = [bearingFactor;repmat(bearingfactor_set(1),nPerGroup,1)];
idx = ceil(10*rand(nPerGroup,1));
leakArea = [leakArea; repmat(leak_area_set(1),nPerGroup,1)];
blockingFactor = [blockingFactor;repmat(blockinfactor_set(1),nPerGroup,1)];
bearingFactor = [bearingFactor;bearingfactor_set(idx)'];

% Double fault simulations
idxA = ceil(10*rand(nPerGroup,1));
idxB = ceil(10*rand(nPerGroup,1));
leakArea = [leakArea; leak_area_set(idxA)'];
blockingFactor = [blockingFactor;blockinfactor_set(idxB)'];
bearingFactor = [bearingFactor;repmat(bearingfactor_set(1),nPerGroup,1)];
idxA = ceil(10*rand(nPerGroup,1));
idxB = ceil(10*rand(nPerGroup,1));
leakArea = [leakArea; leak_area_set(idxA)'];
blockingFactor = [blockingFactor;repmat(blockinfactor_set(1),nPerGroup,1)];
bearingFactor = [bearingFactor;bearingfactor_set(idxB)'];
idxA = ceil(10*rand(nPerGroup,1));
idxB = ceil(10*rand(nPerGroup,1));
leakArea = [leakArea; repmat(leak_area_set(1),nPerGroup,1)];
blockingFactor = [blockingFactor;blockinfactor_set(idxA)'];
bearingFactor = [bearingFactor;bearingfactor_set(idxB)'];

% Triple fault simulations
idxA = ceil(10*rand(nPerGroup,1));
idxB = ceil(10*rand(nPerGroup,1));
idxC = ceil(10*rand(nPerGroup,1));
leakArea = [leakArea; leak_area_set(idxA)'];
blockingFactor = [blockingFactor;blockinfactor_set(idxB)'];
bearingFactor = [bearingFactor;bearingfactor_set(idxC)'];
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Use the fault parameter combinations to create Simulink.SimulationInput objects. For each
simulation input ensure that the random seed is set differently to generate different results.

for ct = numel(leakArea):-1:1
    simInput(ct) = Simulink.SimulationInput(mdl);
    simInput(ct) = setVariable(simInput(ct),'leak_cyl_area_WKSP',leakArea(ct));
    simInput(ct) = setVariable(simInput(ct),'block_in_factor_WKSP',blockingFactor(ct));
    simInput(ct) = setVariable(simInput(ct),'bearing_fault_frict_WKSP',bearingFactor(ct));
    simInput(ct) = setVariable(simInput(ct),'noise_seed_offset_WKSP',ct-1);
end

Use the generateSimulationEnsemble function to run the simulations defined by the
Simulink.SimulationInput objects defined above and store the results in a local sub-folder. Then
create a simulationEnsembleDatastore from the stored results.

Note that running these 1000 simulations in parallel takes around an hour on a standard desktop and
generates around 620MB of data. An option to only run the first 10 simulations is provided for
convenience.

% Run the simulation and create an ensemble to manage the simulation results
runAll = true;
if runAll
    [ok,e] = generateSimulationEnsemble(simInput,fullfile('.','Data'),'UseParallel',true);
else
    [ok,e] = generateSimulationEnsemble(simInput(1:10),fullfile('.','Data')); %#ok<UNRCH>
end

[09-Apr-2018 09:01:38] Checking for availability of parallel pool...
[09-Apr-2018 09:01:38] Loading Simulink on parallel workers...
Analyzing and transferring files to the workers ...done.
[09-Apr-2018 09:01:38] Configuring simulation cache folder on parallel workers...
[09-Apr-2018 09:01:38] Running SetupFcn on parallel workers...
[09-Apr-2018 09:01:39] Loading model on parallel workers...
[09-Apr-2018 09:01:39] Transferring base workspace variables used in the model to parallel workers...
[09-Apr-2018 09:01:41] Running simulations...
[09-Apr-2018 09:02:28] Completed 1 of 1000 simulation runs
[09-Apr-2018 09:02:33] Completed 2 of 1000 simulation runs
[09-Apr-2018 09:02:37] Completed 3 of 1000 simulation runs
[09-Apr-2018 09:02:41] Completed 4 of 1000 simulation runs
[09-Apr-2018 09:02:46] Completed 5 of 1000 simulation runs
[09-Apr-2018 09:02:49] Completed 6 of 1000 simulation runs
[09-Apr-2018 09:02:54] Completed 7 of 1000 simulation runs
[09-Apr-2018 09:02:58] Completed 8 of 1000 simulation runs
[09-Apr-2018 09:03:01] Completed 9 of 1000 simulation runs...

ens = simulationEnsembleDatastore(fullfile('.','Data'));

Processing and Extracting Features from the Simulation Results

The model is configured to log the pump output pressure, output flow, motor speed and motor
current.

ens.DataVariables

ans = 8×1 string array
    "SimulationInput"
    "SimulationMetadata"
    "iMotor_meas"
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    "pIn_meas"
    "pOut_meas"
    "qIn_meas"
    "qOut_meas"
    "wMotor_meas"

For each member in the ensemble preprocess the pump output flow and compute condition indicators
based on the pump output flow. The condition indicators are later used for fault classification. For
preprocessing remove the first 0.8 seconds of the output flow as this contains transients from
simulation and pump startup. As part of the preprocessing compute the power spectrum of the output
flow, and use the SimulationInput to return the values of the fault variables.

Configure the ensemble so that the read only returns the variables of interest and call the
preprocess function that is defined at the end of this example.

ens.SelectedVariables = ["qOut_meas", "SimulationInput"];
reset(ens)
data = read(ens)

data=1×2 table
        qOut_meas                SimulationInput        
    __________________    ______________________________

    [2001×1 timetable]    [1×1 Simulink.SimulationInput]

[flow,flowP,flowF,faultValues] = preprocess(data);

Plot the flow and flow spectrum. The plotted data is for a fault free condition.

% Figure with nominal
subplot(211);
plot(flow.Time,flow.Data);
subplot(212);
semilogx(flowF,pow2db(flowP));
xlabel('Hz')

 Multi-Class Fault Detection Using Simulated Data

1-51



The flow spectrum reveals resonant peaks at expected frequencies. Specifically, the pump motor
speed is 950 rpm, or 15.833 Hz, and since the pump has 3 cylinders the flow is expected to have a
fundamental at 3*15.833 Hz, or 47.5 Hz, as well as harmonics at multiples of 47.5 Hz. The flow
spectrum clearly shows the expected resonant peaks. Faults in one cylinder of the pump will result in
resonances at the pump motor speed, 15.833 Hz and its harmonics.

The flow spectrum and slow signal gives some ideas of possible condition indicators. Specifically,
common signal statistics such as mean, variance, etc. as well as spectrum characteristics. Spectrum
condition indicators relating to the expected harmonics such as the frequency with the peak
magnitude, energy around 15.833 Hz, energy around 47.5 Hz, energy above 100 Hz, are computed.
The frequency of the spectral kurtosis peak is also computed.

Configure the ensemble with data variables for the condition indicators and condition variables for
fault variable values. Then call the extractCI function to compute the features, and use the
writeToLastMemberRead command to add the feature and fault variable values to the ensemble.
The extractCI function is defined at the end of this example.

ens.DataVariables = [ens.DataVariables; ...
    "fPeak"; "pLow"; "pMid"; "pHigh"; "pKurtosis"; ...
    "qMean"; "qVar"; "qSkewness"; "qKurtosis"; ...
    "qPeak2Peak"; "qCrest"; "qRMS"; "qMAD"; "qCSRange"];
ens.ConditionVariables = ["LeakFault","BlockingFault","BearingFault"];

feat = extractCI(flow,flowP,flowF);
dataToWrite = [faultValues, feat];
writeToLastMemberRead(ens,dataToWrite{:})

1 Manage System Data

1-52



The above code preprocesses and computes the condition indicators for the first member of the
simulation ensemble. Repeat this for all the members in the ensemble using the ensemble hasdata
command. To get an idea of the simulation results under different fault conditions plot every
hundredth element of the ensemble.

%Figure with nominal and faults
figure,
subplot(211);
lFlow = plot(flow.Time,flow.Data,'LineWidth',2);
subplot(212);
lFlowP = semilogx(flowF,pow2db(flowP),'LineWidth',2);
xlabel('Hz')
ct = 1;
lColors = get(lFlow.Parent,'ColorOrder');
lIdx = 2;

% Loop over all members in the ensemble, preprocess 
% and compute the features for each member
while hasdata(ens)
    
    % Read member data
    data = read(ens);
    
    % Preprocess and extract features from the member data
    [flow,flowP,flowF,faultValues] = preprocess(data);
    feat = extractCI(flow,flowP,flowF);
    
    % Add the extracted feature values to the member data
    dataToWrite = [faultValues, feat];
    writeToLastMemberRead(ens,dataToWrite{:})
    
    % Plot member signal and spectrum for every 100th member
    if mod(ct,100) == 0
        line('Parent',lFlow.Parent,'XData',flow.Time,'YData',flow.Data, ...
            'Color', lColors(lIdx,:));
        line('Parent',lFlowP.Parent,'XData',flowF,'YData',pow2db(flowP), ...
            'Color', lColors(lIdx,:));
        if lIdx == size(lColors,1)
            lIdx = 1;
        else
            lIdx = lIdx+1;
        end
    end
    ct = ct + 1;
end
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Note that under different fault conditions and severities the spectrum contains harmonics at the
expected frequencies.

Detect and Classify Pump Faults

The previous section preprocessed and computed condition indicators from the flow signal for all the
members of the simulation ensemble, which correspond to the simulation results for different fault
combinations and severities. The condition indicators can be used to detect and classify pump faults
from a pump flow signal.

Configure the simulation ensemble to read the condition indicators, and use the tall and gather
commands to load all the condition indicators and fault variable values into memory

% Get data to design a classifier.
reset(ens)
ens.SelectedVariables = [...
    "fPeak","pLow","pMid","pHigh","pKurtosis",...
    "qMean","qVar","qSkewness","qKurtosis",...
    "qPeak2Peak","qCrest","qRMS","qMAD","qCSRange",...
    "LeakFault","BlockingFault","BearingFault"];
idxLastFeature = 14;

% Load the condition indicator data into memory
data = gather(tall(ens));

Starting parallel pool (parpool) using the 'local' profile ...
Preserving jobs with IDs: 1 2 because they contain crash dump files.
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You can use 'delete(myCluster.Jobs)' to remove all jobs created with profile local. To create 'myCluster' use 'myCluster = parcluster('local')'.
connected to 6 workers.
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 45 sec
Evaluation completed in 45 sec

data(1:10,:)

ans=10×17 table
    fPeak      pLow       pMid     pHigh     pKurtosis    qMean      qVar     qSkewness    qKurtosis    qPeak2Peak    qCrest     qRMS      qMAD     qCSRange    LeakFault    BlockingFault    BearingFault
    ______    _______    ______    ______    _________    ______    ______    _________    _________    __________    ______    ______    ______    ________    _________    _____________    ____________

    43.909    0.86472    117.63    18.874     276.49      35.572    7.5242    -0.72832      2.7738        13.835      1.1494    35.677    2.2326     42690         1e-09          0.8              0      
    43.909    0.44477    125.92    18.899     12.417      35.576     7.869     -0.7094      2.6338        13.335      1.1449    35.686    2.3204     42697         1e-09          0.8              0      
    43.909     1.1782    137.99    17.526     11.589      35.573    7.4367    -0.72208      2.7136        12.641      1.1395    35.678    2.2407     42695         1e-09          0.8              0      
    44.151     156.74    173.84    21.073      199.5      33.768    12.466    -0.30256      2.4782        17.446      1.2138    33.952    2.8582     40518       2.4e-06          0.8              0      
    43.848    0.71756    110.92    18.579     197.02      35.563    7.5781    -0.72377       2.793         14.14      1.1504    35.669    2.2671     42682         1e-09          0.8              0      
    43.909    0.43673    119.56    20.003     11.589       35.57    7.5028    -0.74797      2.7913        13.833      1.1551    35.676    2.2442     42689         1e-09          0.8              0      
    43.788    0.31617     135.3    19.724     476.82      35.568    7.4406    -0.70964      2.6884        14.685      1.1473    35.673    2.2392     42687         1e-09          0.8              0      
    43.848    0.72747    121.63    19.733     11.589      35.523     7.791    -0.72736      2.7864        14.043      1.1469    35.633    2.2722     42633         1e-09          0.8              0      
    43.848    0.62777    128.85    19.244     11.589      35.541    7.5698     -0.6953      2.6942        13.451      1.1415    35.647    2.2603     42654         1e-09          0.8              0      
    43.848     0.4631    134.83    18.918     12.417      35.561    7.8607    -0.68417      2.6664        13.885      1.1504    35.671    2.3078     42681         1e-09          0.8              0      

The fault variable values for each ensemble member (row in the data table) can be converted to fault
flags and the fault flags combined to single flag that captures the different fault status of each
member.

% Convert the fault variable values to flags
data.LeakFlag = data.LeakFault > 1e-6;
data.BlockingFlag = data.BlockingFault < 0.8;
data.BearingFlag = data.BearingFault > 0; 
data.CombinedFlag = data.LeakFlag+2*data.BlockingFlag+4*data.BearingFlag;

Create a classifier that takes as input the condition indicators and returns the combined fault flag.
Train a support vector machine that uses a 2nd order polynomial kernel. Use the cvpartition
command to partition the ensemble members into a set for training and a set for validation.

rng('default') % for reproducibility
predictors = data(:,1:idxLastFeature); 
response = data.CombinedFlag;
cvp = cvpartition(size(predictors,1),'KFold',5);

% Create and train the classifier
template = templateSVM(...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 2, ...
    'KernelScale', 'auto', ...
    'BoxConstraint', 1, ...
    'Standardize', true);
combinedClassifier = fitcecoc(...
    predictors(cvp.training(1),:), ...
    response(cvp.training(1),:), ...
    'Learners', template, ...
    'Coding', 'onevsone', ...
    'ClassNames', [0; 1; 2; 3; 4; 5; 6; 7]);

Check the performance of the trained classifier using the validation data and plot the results on a
confusion plot.
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% Check performance by computing and plotting the confusion matrix
actualValue = response(cvp.test(1),:);
predictedValue = predict(combinedClassifier, predictors(cvp.test(1),:));
confdata = confusionmat(actualValue,predictedValue);
figure,
labels = {'None', 'Leak','Blocking', 'Leak & Blocking', 'Bearing', ...
    'Bearing & Leak', 'Bearing & Blocking', 'All'};
h = heatmap(confdata, ...
    'YLabel', 'Actual leak fault', ...
    'YDisplayLabels', labels, ...
    'XLabel', 'Predicted fault', ...
    'XDisplayLabels', labels, ...
    'ColorbarVisible','off');

The confusion plot shows for each combination of faults the number of times the fault combination
was correctly predicted (the diagonal entries of the plot) and the number of times the fault
combination was incorrectly predicted (the off-diagonal entries).

The confusion plot shows that the classifier did not correctly classify some fault conditions (the off
diagonal terms). However, the no fault condition was correctly predicted. In a couple of places a no
fault condition was predicted when there was a fault (the first column), otherwise a fault was
predicted although it may not be exactly the correct fault condition. Overall the validation accuracy
was 84% and the accuracy at predicting that there is a fault 98%.

% Compute the overall accuracy of the classifier
sum(diag(confdata))/sum(confdata(:))
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ans = 0.6150

% Compute the accuracy of the classifier at predicting 
% that there is a fault
1-sum(confdata(2:end,1))/sum(confdata(:))

ans = 0.9450

Examine the cases where no fault was predicted but a fault did exist. First find cases in the validation
data where the actual fault was a blocking fault but a no fault was predicted.

vData = data(cvp.test(1),:);
b1 = (actualValue==2) & (predictedValue==0);
fData = vData(b1,15:17)

fData=11×3 table
    LeakFault    BlockingFault    BearingFault
    _________    _____________    ____________

      1e-09          0.77              0      
      1e-09          0.77              0      
      1e-09          0.71              0      
      1e-09          0.77              0      
      1e-09          0.77              0      
      1e-09          0.62              0      
      1e-09          0.77              0      
      1e-09          0.77              0      
      1e-09          0.71              0      
      8e-07          0.74              0      
      1e-09          0.74              0      

Find cases in the validation data where the actual fault was a bearing fault but a no fault was
predicted.

b2 = (actualValue==4) & (predictedValue==0);
vData(b2,15:17)

ans =

  0×3 empty table

Examining the cases where no fault was predictive but a fault did exist reveals that they occur when
the blocking fault value of 0.77 is close to its nominal value of 0.8, or the bearing fault value of 6.6e-5
is close to its nominal value of 0. Plotting the spectrum for the case with a small blocking fault value
and comparing with a fault free condition reveals that spectra are very similar making detection
difficult. Re-training the classifier but including a blocking value of 0.77 as a non fault condition
would significantly improve the performance of the fault detector. Alternatively, using additional
pump measurements could provide more information and improve the ability to detect small blocking
faults.

% Configure the ensemble to only read the flow and fault variable values
ens.SelectedVariables = ["qOut_meas","LeakFault","BlockingFault","BearingFault"];
reset(ens)

% Load the ensemble member data into memory
data = gather(tall(ens));
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 38 sec
Evaluation completed in 38 sec

% Look for the member that was incorrectly predicted, and 
% compute its power spectrum
idx = ...
    data.BlockingFault == fData.BlockingFault(1) & ...
    data.LeakFault == fData.LeakFault(1) & ...
    data.BearingFault == fData.BearingFault(1);
flow1 = data(idx,1);
flow1 = flow1.qOut_meas{1};
[flow1P,flow1F] = pspectrum(flow1);

% Look for a member that does not have any faults
idx = ...
    data.BlockingFault == 0.8 & ...
    data.LeakFault == 1e-9 & ...
    data.BearingFault == 0;
flow2 = data(idx,1);
flow2 = flow2.qOut_meas{1};
[flow2P,flow2F] = pspectrum(flow2);

% Plot the power spectra
semilogx(...
    flow1F,pow2db(flow1P),...
    flow2F,pow2db(flow2P));
xlabel('Hz')
legend('Small blocking fault','No fault')
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Conclusion

This example showed how to use a Simulink model to model faults in a reciprocating pump, simulate
the model under different fault combinations and severities, extract condition indicators from the
pump output flow and use the condition indicators to train a classifier to detect pump faults. The
example examined the performance of fault detection using the classifier and noted that small
blocking faults are very similar to the no fault condition and cannot be reliably detected.

Supporting Functions

function [flow,flowSpectrum,flowFrequencies,faultValues] = preprocess(data)
% Helper function to preprocess the logged reciprocating pump data.

% Remove the 1st 0.8 seconds of the flow signal
tMin = seconds(0.8);
flow = data.qOut_meas{1};
flow = flow(flow.Time >= tMin,:);
flow.Time = flow.Time - flow.Time(1);

% Ensure the flow is sampled at a uniform sample rate
flow = retime(flow,'regular','linear','TimeStep',seconds(1e-3));

% Remove the mean from the flow and compute the flow spectrum
fA = flow;
fA.Data = fA.Data - mean(fA.Data);
[flowSpectrum,flowFrequencies] = pspectrum(fA,'FrequencyLimits',[2 250]);
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% Find the values of the fault variables from the SimulationInput
simin = data.SimulationInput{1};
vars = {simin.Variables.Name};
idx = strcmp(vars,'leak_cyl_area_WKSP');
LeakFault = simin.Variables(idx).Value;
idx = strcmp(vars,'block_in_factor_WKSP');
BlockingFault = simin.Variables(idx).Value;
idx = strcmp(vars,'bearing_fault_frict_WKSP');
BearingFault = simin.Variables(idx).Value;

% Collect the fault values in a cell array
faultValues = {...
    'LeakFault', LeakFault, ...
    'BlockingFault', BlockingFault, ...
    'BearingFault', BearingFault};
end

function ci = extractCI(flow,flowP,flowF)
% Helper function to extract condition indicators from the flow signal 
% and spectrum.

% Find the frequency of the peak magnitude in the power spectrum.
pMax = max(flowP);
fPeak = flowF(flowP==pMax);

% Compute the power in the low frequency range 10-20 Hz.
fRange = flowF >= 10 & flowF <= 20;
pLow = sum(flowP(fRange));

% Compute the power in the mid frequency range 40-60 Hz.
fRange = flowF >= 40 & flowF <= 60;
pMid = sum(flowP(fRange));

% Compute the power in the high frequency range >100 Hz.
fRange = flowF >= 100;
pHigh = sum(flowP(fRange));

% Find the frequency of the spectral kurtosis peak
[pKur,fKur] = pkurtosis(flow);
pKur = fKur(pKur == max(pKur));

% Compute the flow cumulative sum range.
csFlow = cumsum(flow.Data);
csFlowRange = max(csFlow)-min(csFlow);

% Collect the feature and feature values in a cell array. 
% Add flow statistic (mean, variance, etc.) and common signal 
% characteristics (rms, peak2peak, etc.) to the cell array.
ci = {...
    'qMean', mean(flow.Data), ...
    'qVar',  var(flow.Data), ...
    'qSkewness', skewness(flow.Data), ...
    'qKurtosis', kurtosis(flow.Data), ...
    'qPeak2Peak', peak2peak(flow.Data), ...
    'qCrest', peak2rms(flow.Data), ...
    'qRMS', rms(flow.Data), ...
    'qMAD', mad(flow.Data), ...
    'qCSRange',csFlowRange, ...
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    'fPeak', fPeak, ...
    'pLow', pLow, ...
    'pMid', pMid, ...
    'pHigh', pHigh, ...
    'pKurtosis', pKur(1)};
end 

See Also
simulationEnsembleDatastore

More About
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
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Data Preprocessing for Condition Monitoring and Predictive
Maintenance

Data preprocessing is the second stage of the workflow for predictive maintenance algorithm
development:

Data preprocessing is often necessary to clean the data and convert it into a form from which you can
extract condition indicators. Data preprocessing can include:

• Outlier and missing-value removal, offset removal, and detrending.
• Noise reduction, such as filtering or smoothing.
• Transformations between time and frequency domain.
• More advanced signal processing such as short-time Fourier transforms and transformations to

the order domain.

You can perform data preprocessing on arrays or tables of measured or simulated data that you
manage with Predictive Maintenance Toolbox ensemble datastores, as described in “Data Ensembles
for Condition Monitoring and Predictive Maintenance” on page 1-2. Generally, you preprocess your
data before analyzing it to identify a promising condition indicator, a quantity that changes in a
predictable way as system performance degrades. (See “Condition Indicators for Monitoring, Fault
Detection, and Prediction” on page 3-2.) There can be some overlap between the steps of
preprocessing and identifying condition indicators. Typically, though, preprocessing results in a
cleaned or transformed signal, on which you perform further analysis to condense the signal
information into a condition indicator.

Understanding your machine and the kind of data you have can help determine what preprocessing
methods to use. For example, if you are filtering noisy vibration data, knowing what frequency range
is most likely to display useful features can help you choose preprocessing techniques. Similarly, it
might be useful to transform gearbox vibration data to the order domain, which is used for rotating
machines when the rotational speed changes over time. However, that same preprocessing would not
be useful for vibration data from a car chassis, which is a rigid body.
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Basic Preprocessing
MATLAB includes many functions that are useful for basic preprocessing of data in arrays or tables.
These include functions for:

• Data cleaning, such as fillmissing and filloutliers. Data cleaning uses various techniques
for finding, removing, and replacing bad or missing data.

• Smoothing data, such as smoothdata and movmean. Use smoothing to eliminate unwanted noise
or high variance in data.

• Detrending data, such as detrend. Removing a trend from the data lets you focus your analysis
on the fluctuations in the data about the trend. While trends can be meaningful, others are due to
systematic effects, and some types of analyses yield better insight once you remove them.
Removing offsets is another, similar type of preprocessing.

• Scaling or normalizing data, such as rescale. Scaling changes the bounds of the data, and can be
useful, for example, when you are working with data in different units.

Another common type of preprocessing is to extract a useful portion of the signal and discard other
portions. For instance, you might discard the first five seconds of a signal that is part of some start-up
transient, and retain only the data from steady-state operation. For an example that performs this
kind of preprocessing, see “Using Simulink to Generate Fault Data” on page 1-25.

For more information on basic preprocessing commands in MATLAB, see “Preprocessing Data”
(MATLAB).

Filtering
Filtering is another way to remove noise or unwanted components from a signal. Filtering is helpful
when you know what frequency range in the data is most likely to display useful features for
condition monitoring or prediction. The basic MATLAB function filter lets you filter a signal with a
transfer function. You can use designfilt to generate filters for use with filter, such as
passband, high-pass and low-pass filters, and other common filter forms. For more information about
using these functions, see “Digital and Analog Filters” (Signal Processing Toolbox).

If you have a Wavelet Toolbox™ license, you can use wavelet tools for more complex filter
approaches. For instance, you can divide your data into subbands, process the data in each subband
separately, and recombine them to construct a modified version of the original signal. For more
information about such filters, see “Filter Banks” (Wavelet Toolbox). You can also use the Signal
Processing Toolbox™ function emd to decompose separate a mixed signal into components with
different time-frequency behavior.

Time-Domain Preprocessing
Predictive Maintenance Toolbox and Signal Processing Toolbox provides functions that let you study
and characterize vibrations in mechanical systems in the time domain. Use these functions for
preprocessing or extraction of condition indicators. For example:

• tsa — Remove noise coherently with time-synchronous averaging and analyze wear using
envelope spectra. The example “Using Simulink to Generate Fault Data” on page 1-25 uses time-
synchronous averaging to preprocess vibration data.

• tsadifference — Remove the regular signal, the first-order sidebands and other specific
sidebands with their harmonics from a time-synchronous averaged (TSA) signal.
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• tsaregular — Isolate the known signal from a TSA signal by removing the residual signal and
specific sidebands.

• tsaresidual — Isolate the residual signal from a TSA signal by removing the known signal
components and their harmonics.

• ordertrack — Use order analysis to analyze and visualize spectral content occurring in rotating
machinery. Track and extract orders and their time-domain waveforms.

• rpmtrack — Track and extract the RPM profile from a vibration signal by computing the RPM as
a function of time.

• envspectrum — Compute an envelope spectrum. The envelope spectrum removes the high-
frequency sinusoidal components from the signal and focuses on the lower-frequency modulations.
The example “Rolling Element Bearing Fault Diagnosis” on page 4-7 uses an envelope spectrum
for such preprocessing.

For more information on these and related functions, see “Vibration Analysis” (Signal Processing
Toolbox).

Frequency-Domain (Spectral) Preprocessing
For vibrating or rotating systems, fault development can be indicated by changes in frequency-
domain behavior such as the changing of resonant frequencies or the presence of new vibrational
components. Signal Processing Toolbox provides many functions for analyzing such spectral behavior.
Often these are useful as preprocessing before performing further analysis for extracting condition
indicators. Such functions include:

• pspectrum — Compute the power spectrum, time-frequency power spectrum, or power
spectrogram of a signal. The spectrogram contains information about how the power distribution
changes with time. The example “Multi-Class Fault Detection Using Simulated Data” on page 1-46
performs data preprocessing using pspectrum.

• envspectrum — Compute an envelope spectrum. A fault that causes a repeating impulse or
pattern will impose amplitude modulation on the vibration signal of the machinery. The envelope
spectrum removes the high-frequency sinusoidal components from the signal and focuses on the
lower-frequency modulations. The example “Rolling Element Bearing Fault Diagnosis” on page 4-
7 uses an envelope spectrum for such preprocessing.

• orderspectrum — Compute an average order-magnitude spectrum.
• modalfrf — Estimate the frequency-response function of a signal.

For more information on these and related functions, see “Vibration Analysis” (Signal Processing
Toolbox).

Time-Frequency Preprocessing
Signal Processing Toolbox includes functions for analyzing systems whose frequency-domain behavior
changes with time. Such analysis is called time-frequency analysis, and is useful for analyzing and
detecting transient or changing signals associated with changes in system performance. These
functions include:

• spectrogram — Compute a spectrogram using a short-time Fourier transform. The spectrogram
describes the time-localized frequency content of a signal and its evolution over time. The example
“Condition Monitoring and Prognostics Using Vibration Signals” on page 5-54 uses
spectrogram to preprocess signals and help identify potential condition indicators.
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• hht — Compute the Hilbert spectrum of a signal. The Hilbert spectrum is useful for analyzing
signals that comprise a mixture of signals whose spectral content changes in time. This function
computes the spectrum of each component in the mixed signal, where the components are
determined by empirical mode decomposition.

• emd — Compute the empirical mode decomposition of a signal. This decomposition describes the
mixture of signals analyzed in a Hilbert spectrum, and can help you separate a mixed signal to
extract a component whose time-frequency behavior changes as system performance degrades.
You can use emd to generate the inputs for hht.

• kurtogram — Compute the time-localized spectral kurtosis, which characterizes a signal by
differentiating stationary Gaussian signal behavior from nonstationary or non-Gaussian behavior
in the frequency domain. As preprocessing for other tools such as envelope analysis, spectral
kurtosis can supply key inputs such as optimal band. (See pkurtosis.) The example “Rolling
Element Bearing Fault Diagnosis” on page 4-7 uses spectral kurtosis for preprocessing and
extraction of condition indicators.

For more information on these and related functions, see “Time-Frequency Analysis” (Signal
Processing Toolbox).

See Also

More About
• “Designing Algorithms for Condition Monitoring and Predictive Maintenance”
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2
• “Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer” on page 7-

2
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Condition Indicators for Monitoring, Fault Detection, and
Prediction

A condition indicator is a feature of system data whose behavior changes in a predictable way as the
system degrades or operates in different operational modes. A condition indicator can be any feature
that is useful for distinguishing normal from faulty operation or for predicting remaining useful life. A
useful condition indicator clusters similar system status together, and sets different status apart.
Examples of condition indicators include quantities derived from:

• Simple analysis, such as the mean value of the data over time
• More complex signal analysis, such as the frequency of the peak magnitude in a signal spectrum,

or a statistical moment describing changes in the spectrum over time
• Model-based analysis of the data, such as the maximum eigenvalue of a state space model which

has been estimated using the data
• Combination of both model-based and signal-based approaches, such as using the signal to

estimate a dynamic model, simulating the dynamic model to compute a residual signal, and
performing statistical analysis on the residual

• Combination of multiple features into a single effective condition indicator

The identification of condition indicators is typically the third step of the workflow for designing a
predictive maintenance algorithm, after accessing and preprocessing data.

You use condition indicators extracted from system data taken under known conditions to train a
model that can then diagnose or predict the condition of a system based on new data taken under
unknown conditions. In practice, you might need to explore your data and experiment with different
condition indicators to find the ones that best suit your machine, your data, and your fault conditions.
The examples “Fault Diagnosis of Centrifugal Pumps Using Residual Analysis” on page 4-55 and
“Using Simulink to Generate Fault Data” on page 1-25 illustrate analyses that test multiple condition
indicators and empirically determine the best ones to use.

In some cases, a combination of condition indicators can provide better separation between fault
conditions than a single indicator on its own. The example “Rolling Element Bearing Fault Diagnosis”
on page 4-7 is one in which such a combined indicator is useful. Similarly, you can often train
decision models for fault detection and diagnosis using a table containing multiple condition
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indicators computed for many ensemble members. For an example that uses this approach, see
“Multi-Class Fault Detection Using Simulated Data” on page 1-46.

Predictive Maintenance Toolbox and other toolboxes include many functions that can be useful for
extracting condition indicators. For more information about different types of condition indicators
and their uses, see:

• “Signal-Based Condition Indicators” on page 3-4
• “Model-Based Condition Indicators” on page 3-7

You can extract condition indicators from vectors or timetables of measured or simulated data that
you manage with Predictive Maintenance Toolbox ensemble datastores, as described in “Data
Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2. It is often useful to
preprocess such data first, as described in “Data Preprocessing for Condition Monitoring and
Predictive Maintenance” on page 2-2.

See Also

More About
• “Signal-Based Condition Indicators” on page 3-4
• “Model-Based Condition Indicators” on page 3-7
• “Designing Algorithms for Condition Monitoring and Predictive Maintenance”
• “Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer” on page 7-

2
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Signal-Based Condition Indicators
A signal-based condition indicator is a quantity derived from processing signal data. The condition
indicator captures some feature of the signal that changes in a reliable way as system performance
degrades. In designing algorithms for predictive maintenance, you use such a condition indicator to
distinguish healthy from faulty machine operation. Or, you can use trends in the condition indicator to
identify degrading system performance indicative of wear or other developing fault condition.

Signal-based condition indicators can be extracted using any type of signal processing, including
time-domain, frequency-domain, and time-frequency analysis. Examples of signal-based condition
indicators include:

• The mean value of a signal that changes as system performance changes
• A quantity that measures chaotic behavior in a signal, the presence of which might be indicative of

a fault condition
• The peak magnitude in a signal spectrum, or the frequency at which the peak magnitude occurs, if

changes in such frequency-domain behavior are indicative of changing machine conditions

In practice, you might need to explore your data and experiment with different condition indicators to
find the ones that best suit your machine, your data, and your fault conditions. There are many
functions that you can use for signal analysis to generate signal-based condition indicators. The
following sections summarize some of them. You can use these functions on signals in arrays or
timetables, such as signals extracted from an ensemble datastore. (See “Data Ensembles for
Condition Monitoring and Predictive Maintenance” on page 1-2.)

Time-Domain Condition Indicators
Simple Time-Domain Features

For some systems, simple statistical features of time signals can serve as condition indicators,
distinguishing fault conditions from healthy conditions. For example, the average value of a particular
signal (mean) or its standard deviation (std) might change as system health degrades. Or, you can try
higher-order moments of the signal such as skewness and kurtosis. With such features, you can
try to identify threshold values that distinguish healthy operation from faulty operation, or look for
abrupt changes in the value that mark changes in system state.

Other functions you can use to extract simple time-domain features include:

• peak2peak — Difference between maximum and minimum values in a signal.
• envelope — Signal envelope.
• dtw — Distance between two signals, computed by dynamic time warping.
• rainflow — Cycle counting for fatigue analysis.

Nonlinear Features in Time-Series Data

In systems that exhibit chaotic signals, certain nonlinear properties can indicate sudden changes in
system behavior. Such nonlinear features can be useful in analyzing vibration and acoustic signals
from systems such as bearings, gears, and engines. They can reflect changes in phase space
trajectory of the underlying system dynamics that occur even before the occurrence of a fault
condition. Thus, monitoring a system's dynamic characteristics using nonlinear features can help
identify potential faults earlier, such as when a bearing is slightly worn.
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Predictive Maintenance Toolbox includes several functions for computing nonlinear signal features.
These quantities represent different ways of characterizing the level of chaos in a system. Increase in
chaotic behavior can indicate a developing fault condition.

• lyapunovExponent — Compute the largest Lyapunov exponent, which characterizes the rate of
separation of nearby phase-space trajectories.

• approximateEntropy — Estimate the approximate entropy of a time-domain signal. The
approximate entropy quantifies the amount of regularity or irregularity in a signal.

• correlationDimension — Estimate the correlation dimension of a signal, which is a measure of
the dimensionality of the phase space occupied by the signal. Changes in correlation dimension
indicate changes in the phase-space behavior of the underlying system.

The computation of these nonlinear features relies on the phaseSpaceReconstruction function,
which reconstructs the phase space containing all dynamic system variables.

The example “Using Simulink to Generate Fault Data” on page 1-25 uses both simple time-domain
features and these nonlinear features as candidates for diagnosing different fault conditions. The
example computes all features for every member of a simulated data ensemble, and uses the
resulting feature table to train a classifier.

Frequency-Domain Condition Indicators
For some systems, spectral analysis can generate signal features that are useful for distinguishing
healthy and faulty states. Some functions you can use to compute frequency-domain condition
indicators include:

• meanfreq — Mean frequency of the power spectrum of a signal.
• powerbw — 3-dB power bandwidth of a signal.
• findpeaks — Values and locations of local maxima in a signal. If you preprocess the signal by

transforming it into the frequency domain, findpeaks can give you the frequencies of spectral
peaks.

The example “Condition Monitoring and Prognostics Using Vibration Signals” on page 5-54 uses
such frequency-domain analysis to extract condition indicators.

For a list of functions you can use for frequency-domain feature extraction, see “Identify Condition
Indicators”.

Time-Frequency Condition Indicators
Time-Frequency Spectral Properties

The time-frequency spectral properties are another way to characterize changes in the spectral
content of a signal over time. Available functions for computing condition indicators based on time-
frequency spectral analysis include:

• pkurtosis — Compute spectral kurtosis, which characterizes a signal by differentiating
stationary Gaussian signal behavior from nonstationary or non-Gaussian behavior in the frequency
domain. Spectral kurtosis takes small values at frequencies where stationary Gaussian noise only
is present, and large positive values at frequencies where transients occur. Spectral kurtosis can
be a condition indicator on its own. You can use kurtogram to visualize the spectral kurtosis,
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before extracting features with pkurtosis. As preprocessing for other tools such as envelope
analysis, spectral kurtosis can supply key inputs such as optimal bandwidth.

• pentropy — Compute spectral entropy, which characterizes a signal by providing a measure of
its information content. Where you expect smooth machine operation to result in a uniform signal
such as white noise, higher information content can indicate mechanical wear or faults.

The example “Rolling Element Bearing Fault Diagnosis” on page 4-7 uses spectral features of fault
data to compute a condition indicator that distinguishes two different fault states in a bearing system.

Time-Frequency Moments

Time-frequency moments provide an efficient way to characterize nonstationary signals, signals
whose frequencies change in time. Classical Fourier analysis cannot capture the time-varying
frequency behavior. Time-frequency distributions generated by short-time Fourier transform or other
time-frequency analysis techniques can capture the time-varying behavior. Time-frequency moments
provide a way to characterize such time-frequency distributions more compactly. There are three
types of time-frequency moments:

• tfsmoment — Conditional spectral moment, which is the variation of the spectral moment over
time. Thus, for example, for the second conditional spectral moment, tfsmoment returns the
instantaneous variance of the frequency at each point in time.

• tftmoment — Conditional temporal moment, which is the variation of the temporal moment with
frequency. Thus, for example, for the second conditional temporal moment, tftmoment returns
the variance of the signal at each frequency.

• tfmoment — Joint time-frequency moment. This scalar quantity captures the moment over both
time and frequency.

You can also compute the instantaneous frequency as a function of time using instfreq.

See Also

More About
• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2
• “Model-Based Condition Indicators” on page 3-7
• “Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer” on page 7-
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Model-Based Condition Indicators
A model-based condition indicator is a quantity derived from fitting system data to a model and
performing further processing using the model. The condition indicator captures aspects of the model
that change as system performance degrades. Model based-condition indicators can be useful when:

• It is difficult to identify suitable condition indicators using features from signal analysis alone. This
situation can occur when other factors affect the signal apart from the fault condition of the
machine. For instance, the signals you measure might vary depending upon one or more input
signals elsewhere in the system.

• You have knowledge of the system or underlying processes such that you can model some aspect
of the system's behavior. For instance, you might know from system knowledge that there is a
system parameter, such as a time constant, that will change as the system degrades.

• You want to do some forecasting or simulation of future system behavior based upon current
system conditions. (See “Models for Predicting Remaining Useful Life” on page 5-4.)

In such cases, it can be useful and efficient to fit the data to some model and use condition indicators
extracted from the model rather than from direct analysis of the signal. Model-based condition
indicators can be based on any type of model that is suitable for your data and system, including both
static and dynamic models. Condition indicators you extract from models can be quantities such as:

• Model parameters, such as the coefficients of a linear fit. A change in such a parameter value can
be indicative of a fault condition.

• Statistical properties of model parameters, such as the variance. A model parameter that falls
outside the statistical range expected from healthy system performance can be indicative of a
fault.

• Dynamic properties, such as system state values obtained by state estimation, or the pole
locations or damping coefficient of an estimated dynamic model.

• Quantities derived from simulation of a dynamic model.

In practice, you might need to explore different models and experiment with different condition
indicators to find the ones that best suit your machine, your data, and your fault conditions. There are
many approaches that you can take to identifying model-based condition indicators. The following
sections summarize common approaches.

Static Models
When you have data obtained from steady-state system operation, you can try fitting the data to a
static model, and using parameters of that model to extract condition indicators. For example,
suppose that you generate an ensemble of data by measuring some characteristic curve in different
machines, at different times, or under different conditions. You can then fit a polynomial model to the
characteristic curves, and use the resulting polynomial coefficients as condition indicators.

The example “Fault Diagnosis of Centrifugal Pumps Using Steady State Experiments” on page 4-30
takes this approach. The data in that example describes the characteristic relation between pump
head and flow rate, measured in an ensemble of pumps during healthy steady-state operation. The
example performs a simple linear fit to describe this characteristic curve. Because there is some
variation in the best-fit parameters across the ensemble, the example uses the resulting parameters
to determine a distribution and confidence region for the fit parameters. Performing the same fit with
a test data set yields parameters, and comparison of these parameters with the distribution yields the
likelihood of a fault.
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You can also use static models to generate grouped distributions of healthy and faulty data. When you
obtain a new point from test data, you can use hypothesis tests to determine which distribution the
point most likely belongs to.

Dynamic Models
For dynamic systems, changes in measured signals (outputs) depend on changes in signals elsewhere
in the system (inputs). You can use a dynamic model of such a system to generate condition
indicators. Some dynamic models are based on both input and output data, while others can be fit
based on time-series output data alone. You do not necessarily need a known model of the underlying
dynamic processes to perform such model fitting. However, system knowledge can help you choose
the type or structure of model to fit.

Some functions you can use for model fitting include:

• ssest — Estimate a state-space model from time-domain input-output data or frequency-response
data.

• ar — Estimate a least-squares autorecursive (AR) model from time-series data.
• nlarx — Model nonlinear behavior using dynamic nonlinearity estimators such as wavelet

networks, tree-partitioning, and sigmoid networks.

There are also recursive estimation functions that let you fit models in real time as you collect the
data, such as recursiveARX. The example “Detect Abrupt System Changes Using Identification
Techniques” on page 4-102 illustrates this approach.

For more functions you can use for model fitting, see “Identify Condition Indicators”.

Condition Indicators Based on Model Parameters or Dynamics

Any parameter of a model might serve as a useful condition indicator. As with static models, changes
in model parameters or values outside of statistical confidence bounds can be indicative of fault
conditions. For example, if you identify a state-space model using ssest, the pole locations or
damping coefficients might change as a fault condition develops. You can use linear analysis functions
such as damp, pole, and zero to extract dynamics from the estimated model.

Another approach is modalfit, which identifies dynamic characteristics by separating a signal into
multiple modes with distinct frequency-response functions.

Sometimes, you understand some of your system dynamics and can represent them using differential
equations or model structures with unknown parameters. For instance, you might be able to derive a
model of your system in terms of physical parameters such as time constants, resonant frequencies,
or damping coefficients, but the precise values of such parameters are unknown. In this case, you can
use linear or nonlinear grey-box models to estimate parameter values, and track how those
parameter values change with different fault conditions. Some functions for you can use for grey-box
estimation include pem and nlarx.

A Simulink model can also serve as a grey-box model for parameter estimation. You can use Simulink
to model your system under both healthy and faulty conditions using physically meaningful
parameters, and estimate the values of those parameters based on system data (for instance, using
the tools in Simulink Design Optimization™).
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Condition Indicators Based on Residuals

Another way to use a dynamic model is to simulate the model and compare the result to the real data
on which the model was based. The difference between system data and the results of simulating an
estimated model is called the residual signal. The example “Fault Diagnosis of Centrifugal Pumps
Using Residual Analysis” on page 4-55 analyzes the residual signal of an estimated nlarx model.
The example computes several statistical and spectral features of the residual signal. It tests these
candidate condition indicators to determine which provide the clearest distinction between healthy
operation and several different faulty states.

Another residual-based approach is to identify multiple models for ensemble data representing
different healthy and fault conditions. For test data, you then compute the residuals for each of these
models. The model that yields the smallest residual signal (and therefore the best fit) indicates which
healthy or fault condition most likely applies to the test data.

For residual analysis of an identified model obtained using commands such as nlarx, ar, or ssest,
use:

• sim — Simulate the model response to an input signal.
• resid — Compute the residuals for the model.

As in the case parameter-based condition indicators, you can also use Simulink to construct models
for residual analysis. The example “Fault Detection Using Data Based Models” on page 4-85 also
illustrates the residual-analysis approach, using a model identified from simulated data.

State Estimators
The values of system states can also serve as condition indicators. System states correspond to
physical parameters, and abrupt or unexpected changes in state values can therefore indicate fault
conditions. State estimators such as unscentedKalmanFilter, extendedKalmanFilter, and
particleFilter let you track the values of system states in real time, to monitor for such changes.
The following examples illustrate the use of state estimators for fault detection:

• “Fault Detection Using an Extended Kalman Filter” on page 4-73
• “Nonlinear State Estimation of a Degrading Battery System” on page 5-69

See Also

More About
• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2
• “Signal-Based Condition Indicators” on page 3-4
• “Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer” on page 7-
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Condition Indicators for Gear Condition Monitoring
Gear condition monitoring metrics are very important for gearbox development and its time-based
preventive maintenance. The indicators enable detection of gear anomalies, and help prevent
catastrophic failure before the fault progresses. Condition monitoring systems deal with various types
of input data, for instance vibration, acoustic emission, temperature, oil debris analysis. Systems
based on vibration analysis, acoustic emission and oil debris are the most common types.

The following figure illustrates the workflow of identifying gear condition metrics and their further
evaluation.

You can use the Diagnostic Feature Designer app and command-line functionality in the Predictive
Maintenance Toolbox to do the following:

• Import measured or simulated data from individual files, an ensemble file, or an ensemble
datastore.

• Derive new variables such as time-synchronous averaged (TSA), regular, residual and difference
signals.

• Generate gear condition metrics from your variables.
• Rank your features so that you can determine numerically which ones are likely to best

discriminate between nominal and faulty behavior.
• Export your most effective features directly to the Classification Learner app for more insight

into feature effectiveness and for algorithm training.
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Extract Gear Condition Metrics
From your original data, derive the signals and extract the gear condition metrics in the following
way:

1 Extract the time-synchronous averaged (TSA).

Diagnostic Feature Designer app Command-line
Use the Time-Synchronous Signal
Averaging option from the Filtering &
Averaging dropdown menu.

Use the tsa and tachorpm functions.

2 Derive the regular, residual and difference signals.

Diagnostic Feature Designer app Command-line
Use the Filter Time-Synchronous
Averaged Signals option from the Filtering
& Averaging dropdown menu.

Use the following functions:

• tsaregular
• tsaresidual
• tsadifference

3 Compute gear condition monitoring metrics from the set of signals obtained from the previous
step.

Diagnostic Feature Designer app Command-line
Use the Rotating Machinery Features
option from the Time-Domain Features
dropdown menu.

Use the gearConditionMetrics function.

Gear condition metrics that can identify the precise location of faults, include the following:

Computed from TSA Signal

• Root-Mean Square (RMS) — Indicates the general condition of the gearbox in later stages of
degradation. RMS is sensitive to gearbox load and speed changes. RMS is usually a good indicator
of the overall condition of gearboxes, but not a good indicator of incipient tooth failure. It is also
useful to detect unbalanced rotating elements. RMS of a standard normal distribution is 1.

• Kurtosis — Fourth order normalized moment of the signal that indicates major peaks in the
amplitude distribution. Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of
the standard normal distribution is 3. Distributions that are more outlier-prone have kurtosis
values greater than 3; distributions that are less outlier-prone have kurtosis values less than 3.
Kurtosis values are higher for damaged gear trains due to sharp peaks in the amplitude
distribution of the signal.

• Crest Factor (CF) — Ratio of signal peak value to RMS value that indicates early signs of
damage, especially where vibration signals exhibit impulsive traits.

Computed from Difference Signal

• FM4 — Describes how peaked or flat the difference signal amplitude is. FM4 is normalized by the
square of the variance, and detects faults isolated to only a finite number of teeth in a gear mesh.
FM4 of a standard normal distribution is 3.
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• M6A — Describes how peaked or flat the difference signal amplitude is. M6A is normalized by the
cube of the variance, and indicates surface damage on the rotating machine components. M6A of a
standard normal distribution is 15.

• M8A — An improved version of the M6A indicator. M8A is normalized by the fourth power of the
variance. M8A of a standard normal distribution is 105.

Computed from a Mix of Signals

• FM0 — Compares ratio of peak value of TSA signal to energy of regular signal. FM0 identifies major
anomalies, such as tooth breakage or heavy wear, in the meshing pattern of a gear.

• Energy Ratio (ER) — Ratio between energy of the difference signal and the energy of the
regular meshing component. Energy Ratio indicates heavy wear, where multiple teeth on the
gear are damaged.

Computed from a Set of Residual Signals

• NA4 — An improved version of the FM4 indicator. NA4 indicates the onset of damage and continues
to react to the damage as it spreads and increases in magnitude.

Evaluate Features and Train Model
Feature selection techniques help you reduce large data sets by eliminating gear condition metrics
that are irrelevant to the analysis you are trying to perform. In the context of condition monitoring,
irrelevant features are those that do not separate healthy from faulty operation or help distinguish
between different fault states. In other words, feature selection means identifying those gear metrics
that are suitable to serve as condition indicators because they change in a detectable, reliable way as
a gearbox performance degrades.

To perform a rigorous relative assessment, you can rank your features using specialized statistical
methods. Each method scores and ranks features by ability to discriminate between or among data
groups, such as between nominal and faulty behavior. The ranking results allow you to eliminate
ineffective features and to evaluate the ranking effects of parameter adjustments when computing
derived variables or features.

Diagnostic Feature Designer app Command-line
Histograms allow you to perform an initial
assessment of feature effectiveness. To perform a
more rigorous relative assessment, you can rank
your features, using the Rank Features option,
by specialized statistical methods.

Use the Export option to export the selected
metrics to the Classification Learner app in the
Statistics and Machine Learning Toolbox™.

You can choose from the following feature
selection functions:

• monotonicity
• prognosability
• trendability
• pca
• pcares
• sequentialfs
• fscnca
• tsne

Once you have defined your set of candidate gear condition metrics, you can export them to the
Classification Learner app in the Statistics and Machine Learning Toolbox. Classification Learner
trains models to classify data, by using automated methods to test different types of models with a
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feature set. In doing so, Classification Learner determines the best model and the most effective
features. For predictive maintenance, the goal of using the Classification Learner is to select and
train a model that discriminates between data from healthy and from faulty systems. You can
incorporate this model into an algorithm for gear train fault detection and prediction.

See Also
Classification Learner | Diagnostic Feature Designer | fscnca | gearConditionMetrics |
monotonicity | pca | pcares | prognosability | sequentialfs | tachorpm | trendability |
tsa | tsadifference | tsaregular | tsaresidual | tsne

More About
• “Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer” on page 7-

2
• “Interpret Feature Histograms in Diagnostic Feature Designer” on page 7-14
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Motor Current Signature Analysis for Gear Train Fault
Detection

This example shows how to identify faults in a gear train using motor current signature analysis
(MCSA) of a current signal driving a hobby-grade servo. MCSA is a useful method for the diagnosis of
faults that induce torque or speed fluctuations, and has been proven to be ideal for motor fault
analysis. Gear fault detection using traditional vibration instruments is challenging, especially in
cases where the gear train is not easily accessible for instrumentation with accelerometers or other
vibration sensors, like the inner workings of a nuclear power plant. This example illustrates how to
apply current signature analysis to extract spectral metrics to detect faults in drive gears of a hobby-
grade servo motor. The simplified workflow to obtain the spectral metrics from the current signal is
as follows:

1 Compute nominal rpm to detect frequencies of interest.
2 Construct frequency bands where fault signals may be present.
3 Extract power spectral density (PSD) data.
4 Compute spectral metrics at the frequency bands of interest.
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Hardware Overview

For this example, the electrical current data was collected from a standard Futaba S3003 hobby
servo, which was modified for continuous rotation. Servos convert the high speed of the internal DC
motor to high torque at the output spline. To achieve this, servos consist of a DC motor, a set of nylon
or metal drive gears, and the control circuit. The control circuit was removed to allow the current
signal to the DC motor to be directly monitored. The tachometer signal at the output spline of the
servo was collected using an infrared photointerrupter along with a 35 mm diameter, eight-holed,
standard hobby servo wheel. The eight holes in the wheel were equally spaced and the IR
photointerrupter was placed such that there were exactly eight pulses per rotation of the servo wheel
horn. The servo and photointerrupter were held in place by custom 3-D printed mounts.
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The DC motor was driven at a constant 5 volts, and with four pairs of gears providing 278:1 speed
reduction, the shaft speed at the spline was about 50 rpm. The current consumption was calculated
using Ohm's law by measuring the voltage drop across a 0.5 Ohm resistor. Since the change in
current measurement values was too small for detection, the current signal was amplified using a
single-supply sensor interface amplifier. The amplified current signal was then filtered using an anti-
aliasing fifth-order elliptic low-pass filter to smooth it and to eliminate noise before sending it to an
Arduino Uno through an analog-to-digital converter (ADC).

As the flowchart shows, the current signal was first amplified and filtered using the amplifier and the
anti-aliasing low-pass filter, respectively. The Arduino Uno sampled the current signal through an
ADC at 1.5 kHz and streamed it to the computer along with the tachometer pulses as serial data at a
baud rate of 115200. A MATLAB script fetched the serial data from the Arduino Uno and wrote it to a
comma-separated values (CSV) file. The CSV files were then read and processed using MATLAB to
extract the spectral metrics.
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Servo Gear Train

The Futaba S3003 servo consists of four pairs of nylon gears as illustrated in the above figure. The
pinion P1 on the DC motor shaft meshes with the stepped gear G1. The pinion P2 is a molded part of
the stepped gear G1 and meshes with the stepped gear G2. The pinion P3, which is a molded part of
gear G2, meshes with the stepped gear G3. Pinion P4, which is molded with G3, meshes with the final
gear G4 that is attached to the output spline. The stepped gear sets G1 and P2, G2 and P3, and G3
and P4 are free spinning gears − that is, they are not attached to their respective shafts. The set of
drive gears provides a 278:1 reduction going from a motor speed of 13901 rpm to about 50 rpm at
the output spline when the motor is driven at 5 volts. The following table outlines the tooth count and
theoretical values of output speed, gear mesh frequencies, and cumulative gear reduction at each
gear mesh.

A total of 10 healthy data sets were collected before the faults were introduced in the stepped gears
G2 and G3. Since the gears were molded out of nylon, simulated cracks were introduced in both the
gears by cutting slots in the tooth space with a hobby knife. The tooth space is the gap between two
adjacent teeth measured along the pitch circle of the spur gear. The slot depths were about 70
percent of the gear radius. A total of 10 faulty data sets were recorded after introducing the faults in
the gears G2 and G3.
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Visualize Data

The file mcsaData.mat contains servoData, a 10-by-2 table of timetables where each timetable
corresponds to one data set. The first column of servoData contains 10 timetables of healthy data
while the second column contains 10 timetables of faulty data. Each data set contains about 11
seconds of data sampled at 1500 Hz.

Load the data.

load('mcsaData.mat','servoData')
servoData

servoData=10×2 table
        healthyData            faultyData     
    ___________________    ___________________

    {16384x2 timetable}    {16384x2 timetable}
    {16384x2 timetable}    {16384x2 timetable}
    {16384x2 timetable}    {16384x2 timetable}
    {16384x2 timetable}    {16384x2 timetable}
    {16384x2 timetable}    {16384x2 timetable}
    {16384x2 timetable}    {16384x2 timetable}
    {16384x2 timetable}    {16384x2 timetable}
    {16384x2 timetable}    {16384x2 timetable}
    {16384x2 timetable}    {16384x2 timetable}
    {16384x2 timetable}    {16384x2 timetable}

head(servoData.healthyData{1,1})

ans=8×2 timetable
         Time         Pulse    Signal
    ______________    _____    ______

    0 sec               0      66.523
    0.00066667 sec      0      62.798
    0.0013333 sec       0      63.596
    0.002 sec           0      64.128
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    0.0026667 sec       0      60.669
    0.0033333 sec       0      62.798
    0.004 sec           0      65.459
    0.0046667 sec       0      56.678

Each timetable in servoData contains one data set with the tachometer signal in the first column
and the current signal in the second column.

For this example, consider one set each of healthy and faulty data, and visualize the current signal
and tachometer pulses.

healthyData = servoData.healthyData{1,1};
faultyData = servoData.faultyData{1,1};
healthyCurrent = healthyData.Signal;
faultyCurrent = faultyData.Signal;
healthyTacho = healthyData.Pulse;
faultyTacho = faultyData.Pulse;
tHealthy = healthyData.Time;
tFaulty = faultyData.Time;

figure
ax1 = subplot(221);
plot(tHealthy,healthyCurrent)
title('Current Signal - Healthy Gears')
ylabel('Current (mA)')
ax2 = subplot(222);
plot(tFaulty,faultyCurrent)
title('Current Signal - Faulty Gears')
ylabel('Current (mA)')
ax3 = subplot(223);
plot(tHealthy,healthyTacho)
title('Tachometer Pulse - Healthy Gears')
ylabel('Pulses, 8/rev')
ax4 = subplot(224);
plot(tFaulty,faultyTacho)
title('Tachometer Pulse - Faulty Gears')
ylabel('Pulses, 8/rev')
linkaxes([ax1,ax2,ax3,ax4],'x');
ax1.XLim = seconds([0 2]);
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The output spline of the servo has eight pulses per rotation, corresponding to the eight holes on the
servo wheel.

Compute Nominal Rpm

Compute the nominal speed to detect frequencies of interest in the gear system and match them
correctly with the frequencies on the power spectra. Using the sampling frequency value of 1500 Hz,
visualize the tachometer signal and compute the nominal rpm using tachorpm.

fs = 1500;
figure
tachorpm(healthyTacho,fs,'PulsesPerRev',8)
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figure
tachorpm(faultyTacho,fs,'PulsesPerRev',8)
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rpmHealthy = mean(tachorpm(healthyTacho,fs,'PulsesPerRev',8))

rpmHealthy = 49.8550

rpmFaulty = mean(tachorpm(faultyTacho,fs,'PulsesPerRev',8))

rpmFaulty = 49.5267

Observe that there is a very small difference in the output shaft speed between the healthy and faulty
data sets. The actual nominal rpm values are also close to the theoretical value of 50 rpm. Hence,
consider the same value of 49.9 rpm for both the healthy and faulty signal analysis.

Construct Frequency Bands

Constructing frequency bands is an important prerequisite for computing the spectral metrics. Using
the tooth count of the drive gears in the gear train and the nominal rpm, first compute the
frequencies of interest. The frequencies of interest are actual output speed values in hertz whose
values are close to the theoretical values listed in the table below.
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G4 = 41; G3 = 35; G2 = 50; G1 = 62;
P4 = 16; P3 = 10; P2 = 10; P1 = 10;
rpm = rpmHealthy;

FS5 = mean(rpm)/60;
FS4 = G4/P4*FS5;
FS3 = G3/P3*FS4;
FS2 =  G2/P2*FS3;
FS1 =  G1/P1*FS2;
FS = [FS1,FS2,FS3,FS4,FS5]

FS = 1×5

  231.0207   37.2614    7.4523    2.1292    0.8309

Next, construct the frequency bands for the all the output speeds which include the following
frequencies of interest using faultBands.

• FS1 at 231 Hz, its first two harmonics, and 0:1 sidebands of FS2
• FS2 at 37.3 Hz, its first two harmonics, and 0:1 sidebands of FS3
• FS3 at 7.5 Hz and its first two harmonics
• FS4 at 2.1 Hz and its first two harmonics

[FB1,info1] = faultBands(FS1,1:2,FS2,0:1);
[FB2,info2] = faultBands(FS2,1:2,FS3,0:1);
[FB3,info3] = faultBands(FS3,1:2);
[FB4,info4] = faultBands(FS4,1:2);
FB = [FB1;FB2;FB3;FB4]

FB = 16×2

  187.9838  199.5348
  225.2452  236.7962
  262.5066  274.0577
  419.0045  430.5556
  456.2659  467.8170
  493.5273  505.0784
   28.8776   30.7407
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   36.3299   38.1929
   43.7822   45.6452
   66.1390   68.0021
      ⋮

The output FB is a 16-by-2 array of frequency ranges for these frequencies of interest.

Extract Power Spectral Density (PSD) Data

Compute and visualize the power spectrum of the healthy and faulty data. Also plot the frequencies of
interest on the spectrum plot by using the information in the structure info.

figure
pspectrum(healthyCurrent,fs,'FrequencyResolution',0.5)
hold on
pspectrum(faultyCurrent,fs,'FrequencyResolution',0.5)
hold on
info1.Labels = regexprep(info1.Labels,'F0','FS1');
info1.Labels = regexprep(info1.Labels,'F1','FS2');
helperPlotXLines(info1,[0.5 0.5 0.5])
info2.Labels = regexprep(info2.Labels,'F0','FS2');
info2.Labels = regexprep(info2.Labels,'F1','FS3');
helperPlotXLines(info2,[0.5 0.5 0.5])
info3.Labels = regexprep(info3.Labels,'F0','FS3');
helperPlotXLines(info3,[0.5 0.5 0.5])
info4.Labels = regexprep(info4.Labels,'F0','FS4');
helperPlotXLines(info4,[0.5 0.5 0.5])
legend('Healthy Data','Faulty Data','Location','South')
hold off
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The plot in blue indicates the healthy spectrum while the plot in red indicates the spectrum of the
faulty data. From the plot, observe the increase in amplitudes of fault frequencies:

• 1FS1 at 231 Hz, its second harmonic 2FS1 at 462 Hz, and their respective sidebands

Zoom in on the plot to observe the increase in amplitudes of the following remaining frequencies:

• 1FS2 at 37.2 Hz and its sidebands
• 1FS3 at 7.5 Hz and its second harmonic 2FS3 at 15 Hz
• 1FS4 at 2.1 Hz and its second harmonic 2FS4 at 4.2 Hz
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Use pspectrum to compute and store the PSD and the frequency grid data for the healthy and faulty
signals respectively.

[psdHealthy,fHealthy] = pspectrum(healthyCurrent,fs,'FrequencyResolution',0.5);
[psdFaulty,fFaulty] = pspectrum(faultyCurrent,fs,'FrequencyResolution',0.5);

Compute Spectral Metrics

Using the frequency bands and the PSD data, compute the spectral metrics for the healthy and faulty
data using faultBandMetrics.

spectralMetrics = faultBandMetrics({[psdHealthy,fHealthy],[psdFaulty,fFaulty]},FB)

spectralMetrics=2×49 table
    PeakAmplitude1    PeakFrequency1    BandPower1    PeakAmplitude2    PeakFrequency2    BandPower2    PeakAmplitude3    PeakFrequency3    BandPower3    PeakAmplitude4    PeakFrequency4    BandPower4    PeakAmplitude5    PeakFrequency5    BandPower5    PeakAmplitude6    PeakFrequency6    BandPower6    PeakAmplitude7    PeakFrequency7    BandPower7    PeakAmplitude8    PeakFrequency8    BandPower8    PeakAmplitude9    PeakFrequency9    BandPower9    PeakAmplitude10    PeakFrequency10    BandPower10    PeakAmplitude11    PeakFrequency11    BandPower11    PeakAmplitude12    PeakFrequency12    BandPower12    PeakAmplitude13    PeakFrequency13    BandPower13    PeakAmplitude14    PeakFrequency14    BandPower14    PeakAmplitude15    PeakFrequency15    BandPower15    PeakAmplitude16    PeakFrequency16    BandPower16    TotalBandPower
    ______________    ______________    __________    ______________    ______________    __________    ______________    ______________    __________    ______________    ______________    __________    ______________    ______________    __________    ______________    ______________    __________    ______________    ______________    __________    ______________    ______________    __________    ______________    ______________    __________    _______________    _______________    ___________    _______________    _______________    ___________    _______________    _______________    ___________    _______________    _______________    ___________    _______________    _______________    ___________    _______________    _______________    ___________    _______________    _______________    ___________    ______________

       0.002071           193.75         0.010883        0.50813            231.06         0.46652        0.0019579            272.5          0.01184       0.0020489           424.06         0.011224        0.54985               462          0.8955        0.0024297           493.69        0.0091051       0.0029648           29.813        0.0035477        0.015581           37.25          0.011131       0.0028858           44.688        0.0041316        0.011896            67.063          0.0072763        0.059124             74.5           0.033566         0.013218                82           0.007988         5.7905             7.4375           2.3115          0.068452            14.938          0.027653          0.79002             2.125           0.14381         0.098478             4.25           0.018058          3.9737    
      0.0098034           192.44         0.017915         3.6923            229.44          2.9976        0.0035208           266.44         0.015639        0.005705           421.75         0.019292         1.2974            459.69          3.2184        0.0053275           495.88         0.016296       0.0031679           28.938         0.004428        0.023981              37          0.014445          0.0136           44.438        0.0089112         0.01142            66.625          0.0077036        0.068403               74           0.037017         0.012242            81.438          0.0075801         7.7931              7.375           3.0192           0.15693            14.813          0.058259           2.4212             2.125           0.44071          0.55162             4.25            0.10029          9.9837    

The output is a 2-by-49 table of metrics for the frequency ranges in FB. The first row contains the
metrics for healthy data while the second row contains the faulty data metrics. Observe that the
following metrics have considerably higher values for the faulty data than for the healthy data:

• PeakAmplitude2 for the frequency at 231 Hz with a difference of 3.1842 units
• TotalBandPower with a difference of 6.01 units
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Hence, use these two metrics to create a scatter plot to group the faulty and healthy data sets
separately.

Create Scatter Plot

Create a scatter plot to classify healthy and faulty data using the two spectral metrics
PeakAmplitude2 and TotalBandPower for all 20 data sets in the table servoData.

plotData = zeros(10,4);
for n = 1:max(size(servoData))
    hC = servoData.healthyData{n,1}.Signal;
    fC = servoData.faultyData{n,1}.Signal;
    
    [psdH,freqH] = pspectrum(hC,fs,'FrequencyResolution',0.5);
    [psdF,freqF] = pspectrum(fC,fs,'FrequencyResolution',0.5);
    
    sMetrics = faultBandMetrics({[psdH,freqH],[psdF,freqF]},FB);
    plotData(n,:) = [sMetrics{:,4}',sMetrics{:,49}'];
end
figure
scatter(plotData(:,1),plotData(:,3),[],'blue')
hold on;
scatter(plotData(:,2),plotData(:,4),[],'red')
legend('Healthy Data','Faulty Data','Location','best')
xlabel('Peak Amplitude 2')
ylabel('Total Band Power')
hold off
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Observe that the healthy data sets and the faulty data sets are grouped in different areas of the
scatter plot.

Hence, you can classify faulty and healthy data by analyzing the current signature of the servo motor.

To use all the available spectral metrics for classification, use Classification Learner.

Helper Function

The helper function helperPlotXLines uses the information in the structure info to plot the
frequency band center lines on the power spectrum plot.

function helperPlotXLines(I,c)
for k = 1:length(I.Centers)
    xline(I.Centers(k),'Label',I.Labels(k),'LineStyle','-.','Color',c);
end
end

References
[1] Moster, P.C. "Gear Fault Detection and Classification Using Learning Machines." Sound &

vibration. 38. 22-27. 2004

See Also
Classification Learner | faultBandMetrics | faultBands | pspectrum
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Reconstruct Phase Space and Estimate Condition Indicators
Using Live Editor Tasks

This example shows how use Live Editor tasks to reconstruct phase space of a uniformly sampled
signal and then use the reconstructed phase space to estimate the correlation dimension and the
Lyapunov exponent.

Live Editor tasks let you interactively iterate on parameters and settings while observing their effects
on the result of your computation. The tasks then and automatically generate MATLAB® code that
achieves the displayed results. To experiment with the Live Editor tasks in this script, open this
example.

For more information about Live Editor Tasks generally, see “Add Interactive Tasks to a Live Script”
(MATLAB).

Load Data

In this example, assume that you have measurements for a Lorenz Attractor. Your measurements are
along the x-direction only, but the attractor is a three-dimensional system. Using this limited data,
reconstruct the phase space such that the properties of the original three-dimensional system are
recovered.

Load the Lorenz Attractor data, and visualize its x, y and z measurements on a 3-D plot. Since the
Lorenz attractor has 3 dimensions, specify dim as 3.

load('lorenzAttractorExampleData.mat','data','fs')
X = data(:,1);
plot3(data(:,1),data(:,2),data(:,3));
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Reconstruct Phase Space

To reconstruct the phase space data, use the Reconstruct Phase Space Live Editor Task. You can
insert a task into your script using the Task menu in the Live Editor. In this script, Reconstruct
Phase Space is already inserted. Open the example to experiment with the task.

To perform the phase space reconstruction, in the task, specify the signal you loaded, X and the
embedding dimension as 3. In the Reconstruct Phase Space task, you can experiment with different
lag and embedding dimension values and observe the reconstructed Lorenz attractor displayed in the
output plot. For details about the available options and parameters, see the Reconstruct Phase Space
task reference page.
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After you finish experimenting with the task, the reconstructed phase space data phaseSpace and
the estimated time delay lag are in the MATLAB® workspace, and you can use them to identify
different condition indicators for the Lorenz attractor. For instance, estimate the correlation
dimension and the Lyapunov exponent values using phaseSpace.

Estimate Correlation Dimension

To estimate the correlation dimension, use the Estimate Correlation Dimension Live Editor Task. In
the task, specify the phase space signal, phaseSpace from the workspace. Specify signal type as
Phase space. The task automatically computes the embedding dimension and lag values from the
phase space signal. For this example, use 0.05 and 20 for the minimum and maximum similarity
radius values and the default value of 10 points. In the Estimate Correlation Dimension task, you
can experiment with similarity radius values and number of points to align the linear fit line with the
original correlation integral data line in the output plot. For details about the available options and
parameters, see the Estimate Correlation Dimension task reference page.
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As you vary parameters in the task, it automatically updates the generated code for performing the
estimation and creating the plot. (To see the generated code, click  at the bottom of the task.)

Estimate Lyapunov Exponent

To estimate the Lyapunov Exponent, use the Estimate Lyapunov Exponent Live Editor Task. In the
task, specify the phase space signal, phaseSpace from the workspace. Specify signal type as Phase
space and the sampling rate as 100 Hz. The task automatically computes the embedding dimension
and lag values from the phase space signal. For this example, use 21 and 161 for the minimum and
maximum expansion range values and the default value of 110 for the mean period. In the Estimate
Lyapunov Exponent task, you can experiment with expansion range and mean period values to align
the linear fit line with the original log divergence data line in the output plot. For details about the
available options and parameters, see the Estimate Lyapunov Exponent task reference page.
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Generate Code

As you vary parameters in each task, it automatically updates the generated code for performing the
estimation and creating the plot. To see the generated code, click  at the bottom of the task. You
can cut and paste this code to use or modify later in the existing script or a different program. For
example:
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Because the underlying code is now part of your live script, you can continue to use the variables
created by each task for further processing.

See Also
Estimate Approximate Entropy | Estimate Correlation Dimension | Estimate Lyapunov
Exponent | Reconstruct Phase Space | approximateEntropy | correlationDimension |
lyapunovExponent | phaseSpaceReconstruction

More About
• “Reconstruct Phase Space and Estimate Condition Indicators Using Live Editor Tasks” on page

3-29
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Detect and Diagnose Faults

• “Decision Models for Fault Detection and Diagnosis” on page 4-2
• “Rolling Element Bearing Fault Diagnosis” on page 4-7
• “Fault Diagnosis of Centrifugal Pumps Using Steady State Experiments” on page 4-30
• “Fault Diagnosis of Centrifugal Pumps Using Residual Analysis” on page 4-55
• “Fault Detection Using an Extended Kalman Filter” on page 4-73
• “Fault Detection Using Data Based Models” on page 4-85
• “Detect Abrupt System Changes Using Identification Techniques” on page 4-102
• “Chemical Process Fault Detection Using Deep Learning” on page 4-109
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Decision Models for Fault Detection and Diagnosis
Condition monitoring includes discriminating between faulty and healthy states (fault detection) or,
when a fault state is present, determining the source of the fault (fault diagnosis). To design an
algorithm for condition monitoring, you use condition indicators extracted from system data to train a
decision model that can analyze indicators extracted from test data to determine the current system
state. Thus, this step in the algorithm-design process is the next step after identifying condition
indicators.

(For information about using condition indicators for fault prediction, see “Models for Predicting
Remaining Useful Life” on page 5-4.)

Some examples of decision models for condition monitoring include:

• A threshold value or set of bounds on a condition-indicator value that indicates a fault when the
indicator exceeds it

• A probability distribution that describes the likelihood that any particular value of the condition
indicator is indicative of any particular type of fault

• A classifier that compares the current value of the condition indicator to values associated with
fault states, and returns the likelihood that one or another fault state is present

In general, when you are testing different models for fault detection or diagnosis, you construct a
table of values of one or more condition indicators. The condition indicators are features that you
extract from data in an ensemble representing different healthy and faulty operating conditions. (See
“Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2.) It is useful to
partition your data into a subset that you use for training the decision model (the training data) and a
disjoint subset that you use for validation (the validation data). Compared to training and validation
with overlapping data sets, using completely separate training and validation data generally gives you
a better sense of how the decision model will perform with new data.

When designing your algorithm, you might test different fault detection and diagnosis models using
different condition indicators. Thus, this step in the design process is likely iterative with the step of
extracting condition indicators, as you try different indicators, different combinations of indicators,
and different decision models.
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Statistics and Machine Learning Toolbox and other toolboxes include functionality that you can use to
train decision models such as classifiers and regression models. Some common approaches are
summarized here.

Feature Selection
Feature selection techniques help you reduce large data sets by eliminating features that are
irrelevant to the analysis you are trying to perform. In the context of condition monitoring, irrelevant
features are those that do not separate healthy from faulty operation or help distinguish between
different fault states. In other words, feature selection means identifying those features that are
suitable to serve as condition indicators because they change in a detectable, reliable way as system
performance degrades. Some functions for feature selection include:

• pca — Perform principal component analysis, which finds the linear combination of independent
data variables that account for the greatest variation in observed values. For instance, suppose
that you have ten independent sensor signals for each member of your ensemble from which you
extract many features. In that case, principal component analysis can help you determine which
features or combination of features are most effective for separating the different healthy and
faulty conditions represented in your ensemble. The example “Wind Turbine High-Speed Bearing
Prognosis” on page 5-37 uses this approach to feature selection.

• sequentialfs — For a set of candidate features, identify the features that best distinguish
between healthy and faulty conditions, by sequentially selecting features until there is no
improvement in discrimination.

• fscnca — Perform feature selection for classification using neighborhood component analysis.
The example “Using Simulink to Generate Fault Data” on page 1-25 uses this function to weight a
list of extracted condition indicators according to their importance in distinguishing among fault
conditions.

For more functions relating to feature selection, see “Dimensionality Reduction and Feature
Extraction” (Statistics and Machine Learning Toolbox).

Statistical Distribution Fitting
When you have a table of condition indicator values and corresponding fault states, you can fit the
values to a statistical distribution. Comparing validation or test data to the resulting distribution
yields the likelihood that the validation or test data corresponds to one or the other fault states. Some
functions you can use for such fitting include:

• ksdensity — Estimate a probability density for sample data.
• histfit — Generate a histogram from data, and fit it to a normal distribution. The example

“Fault Diagnosis of Centrifugal Pumps Using Steady State Experiments” on page 4-30 uses this
approach.

• ztest — Test likelihood that data comes from a normal distribution with specified mean and
standard deviation.

For more information about statistical distributions, see “Probability Distributions” (Statistics and
Machine Learning Toolbox).

Machine Learning
There are several ways to apply machine-learning techniques to the problem of fault detection and
diagnosis. Classification is a type of supervised machine learning in which an algorithm “learns” to
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classify new observations from examples of labeled data. In the context of fault detection and
diagnosis, you can pass condition indicators derived from an ensemble and their corresponding fault
labels to an algorithm-fitting function that trains the classifier.

For instance, suppose that you compute a table of condition-indicator values for each member in an
ensemble of data that spans different healthy and faulty conditions. You can pass this data to a
function that fits a classifier model. This training data trains the classifier model to take a set of
condition-indicator values extracted from a new data set, and guess which healthy or faulty condition
applies to the data. In practice, you use a portion of your ensemble for training, and reserve a disjoint
portion of the ensemble for validating the trained classifier.

Statistics and Machine Learning Toolbox includes many functions that you can use to train classifiers.
These functions include:

• fitcsvm — Train a binary classification model to distinguish between two states, such as the
presence or absence of a fault condition. The examples “Using Simulink to Generate Fault Data”
on page 1-25 use this function to train a classifier with a table of feature-based condition
indicators. The example “Fault Diagnosis of Centrifugal Pumps Using Steady State Experiments”
on page 4-30 also uses this function, with model-based condition indicators computed from
statistical properties of the parameters obtained by fitting data to a static model.

• fitcecoc — Train a classifier to distinguish among multiple states. This function reduces a
multiclass classification problem to a set of binary classifiers. The example “Multi-Class Fault
Detection Using Simulated Data” on page 1-46 uses this function.

• fitctree — Train a multiclass classification model by reducing the problem to a set of binary
decision trees.

• fitclinear — Train a classifier using high-dimensional training data. This function can be useful
when you have a large number of condition indicators that you are not able to reduce using
functions such as fscnca.

Other machine-learning techniques include k-means clustering (kmeans), which partitions data into
mutually exclusive clusters. In this technique, a new measurement is assigned to a cluster by
minimizing the distance from the data point to the mean location of its assigned cluster. Tree bagging
is another technique that aggregates an ensemble of decision trees for classification. The example
“Fault Diagnosis of Centrifugal Pumps Using Steady State Experiments” on page 4-30 uses a
TreeBagger classifier.

For more general information about machine-learning techniques for classification, see
“Classification” (Statistics and Machine Learning Toolbox).

Regression with Dynamic Models
Another approach to fault detection and diagnosis is to use model identification. In this approach, you
estimate dynamic models of system operation in healthy and faulty states. Then, you analyze which
model is more likely to explain the live measurements from the system. This approach is useful when
you have some information about your system that can help you select a model type for identification.
To use this approach, you:

1 Collect or simulate data from the system operating in a healthy condition and in known faulty,
degraded, or end-of-life conditions.

2 Identify a dynamic model representing the behavior in each healthy and fault condition.
3 Use clustering techniques to draw a clear distinction between the conditions.
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4 Collect new data from a machine in operation and identify a model of its behavior. You can then
determine which of the other models, healthy or faulty, is most likely to explain the observed
behavior.

The example “Fault Detection Using Data Based Models” on page 4-85 uses this approach.
Functions you can use for identifying dynamic models include:

• ssest
• arx, armax, ar
• nlarx

You can use functions like forecast to predict the future behavior of the identified model.

Control Charts
Statistical process control (SPC) methods are techniques for monitoring and assessing the quality of
manufactured goods. SPC is used in programs that define, measure, analyze, improve, and control
development and production processes. In the context of predictive maintenance, control charts and
control rules can help you determine when a condition-indicator value indicates a fault. For instance,
suppose you have a condition indicator that indicates a fault if it exceeds a threshold, but also
exhibits some normal variation that makes it difficult to identify when the threshold is crossed. You
can use control rules to define the threshold condition as occurring when a specified number of
sequential measurements exceeds the threshold, rather than just one.

• controlchart — Visualize a control chart.
• controlrules — Define control rules and determine whether they are violated.
• cusum — Detect small changes in the mean value of data.

For more information about statistical process control, see “Statistical Process Control” (Statistics
and Machine Learning Toolbox).

Changepoint Detection
Another way to detect fault conditions is to track the value of a condition indicator over time and
detect abrupt changes in the trend behavior. Such abrupt changes can be indicative of a fault. Some
functions you can use for such changepoint detection include:

• findchangepts — Find abrupt changes in a signal.
• findpeaks — Find peaks in a signal.
• pdist, pdist2, mahal — Find the distance between measurements or sets of measurements,

according to different definitions of distance.
• segment — Segment data and estimate AR, ARX, ARMA, or ARMAX models for each segment. The

example “Fault Detection Using Data Based Models” on page 4-85 uses this approach.

See Also

More About
• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2
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• “Models for Predicting Remaining Useful Life” on page 5-4
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Rolling Element Bearing Fault Diagnosis
This example shows how to perform fault diagnosis of a rolling element bearing based on acceleration
signals, especially in the presence of strong masking signals from other machine components. The
example will demonstrate how to apply envelope spectrum analysis and spectral kurtosis to diagnose
bearing faults and it is able to scale up to Big Data applications.

Problem Overview

Localized faults in a rolling element bearing may occur in the outer race, the inner race, the cage, or
a rolling element. High frequency resonances between the bearing and the response transducer are
excited when the rolling elements strike a local fault on the outer or inner race, or a fault on a rolling
element strikes the outer or inner race [1]. The following picture shows a rolling element striking a
local fault at the inner race. The problem is how to detect and identify the various types of faults.

Machinery Failure Prevention Technology (MFPT) Challenge Data

MFPT Challenge data [4] contains 23 data sets collected from machines under various fault
conditions. The first 20 data sets are collected from a bearing test rig, with 3 under good conditions,
3 with outer race faults under constant load, 7 with outer race faults under various loads, and 7 with
inner race faults under various loads. The remaining 3 data sets are from real-world machines: an oil
pump bearing, an intermediate speed bearing, and a planet bearing. The fault locations are unknown.
In this example, only the data collected from the test rig with known conditions are used.

Each data set contains an acceleration signal "gs", sampling rate "sr", shaft speed "rate", load weight
"load", and four critical frequencies representing different fault locations: ballpass frequency outer
race (BPFO), ballpass frequency inner race (BPFI), fundamental train frequency (FTF), and ball spin
frequency (BSF). Here are the formulae for those critical frequencies [1].

 Rolling Element Bearing Fault Diagnosis

4-7



• Ballpass frequency, outer race (BPFO)

BPFO =
nfr
2 1 − d

Dcosϕ

• Ballpass frequency, inner race (BPFI)

BPFI =
nfr
2 1 + d

Dcosϕ

• Fundamental train frequency (FTF), also known as cage speed

FTF =
fr
2 1 − d

Dcosϕ

• Ball (roller) spin frequency

BSF = D
2d 1 − d

Dcosϕ
2

As shown in the figure, d is the ball diameter, D is the pitch diameter. The variable fr is the shaft
speed, n is the number of rolling elements, ϕ is the bearing contact angle [1].

Envelope Spectrum Analysis for Bearing Diagnosis

In the MFPT data set, the shaft speed is constant, hence there is no need to perform order tracking as
a pre-processing step to remove the effect of shaft speed variations.

When rolling elements hit the local faults at outer or inner races, or when faults on the rolling
element hit the outer or inner races, the impact will modulate the corresponding critical frequencies,
e.g. BPFO, BPFI, FTF, BSF. Therefore, the envelope signal produced by amplitude demodulation
conveys more diagnostic information that is not available from spectrum analysis of the raw signal.
Take an inner race fault signal in the MFPT dataset as an example.

dataInner = load(fullfile(matlabroot, 'toolbox', 'predmaint', ...
    'predmaintdemos', 'bearingFaultDiagnosis', ...
    'train_data', 'InnerRaceFault_vload_1.mat'));

Visualize the raw inner race fault data in the time domain.

xInner = dataInner.bearing.gs;
fsInner = dataInner.bearing.sr;
tInner = (0:length(xInner)-1)/fsInner;
figure
plot(tInner, xInner)
xlabel('Time, (s)')
ylabel('Acceleration (g)')
title('Raw Signal: Inner Race Fault')
xlim([0 0.1])
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Visualize the raw data in frequency domain.

figure
[pInner, fpInner] = pspectrum(xInner, fsInner);
pInner = 10*log10(pInner);
plot(fpInner, pInner)
xlabel('Frequency (Hz)')
ylabel('Power Spectrum (dB)')
title('Raw Signal: Inner Race Fault')
legend('Power Spectrum')
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Now zoom in the power spectrum of the raw signal in low frequency range to take a closer look at the
frequency response at BPFI and its first several harmonics.

figure
plot(fpInner, pInner)
ncomb = 10;
helperPlotCombs(ncomb, dataInner.BPFI)
xlabel('Frequency (Hz)')
ylabel('Power Spectrum (dB)')
title('Raw Signal: Inner Race Fault')
legend('Power Spectrum', 'BPFI Harmonics')
xlim([0 1000])
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No clear pattern is visible at BPFI and its harmonics. Frequency analysis on the raw signal does not
provide useful diagnosis information.

Looking at the time-domain data, it is observed that the amplitude of the raw signal is modulated at a
certain frequency, and the main frequency of the modulation is around 1/0.009 Hz ≈ 111 Hz. It is
known that the frequency the rolling element hitting a local fault at the inner race, that is BPFI, is
118.875 Hz. This indicates that the bearing potentially has an inner race fault.

figure
subplot(2, 1, 1)
plot(tInner, xInner)
xlim([0.04 0.06])
title('Raw Signal: Inner Race Fault')
ylabel('Acceleration (g)')
annotation('doublearrow', [0.37 0.71], [0.8 0.8])
text(0.047, 20, ['0.009 sec \approx 1/BPFI, BPFI = ' num2str(dataInner.BPFI)])

To extract the modulated amplitude, compute the envelope of the raw signal, and visualize it on the
bottom subplot.

subplot(2, 1, 2)
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] = envspectrum(xInner, fsInner);
plot(tEnvInner, xEnvInner)
xlim([0.04 0.06])
xlabel('Time (s)')
ylabel('Acceleration (g)')
title('Envelope signal')
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Now compute the power spectrum of the envelope signal and take a look at the frequency response at
BPFI and its harmonics.

figure
plot(fEnvInner, pEnvInner)
xlim([0 1000])
ncomb = 10;
helperPlotCombs(ncomb, dataInner.BPFI)
xlabel('Frequency (Hz)')
ylabel('Peak Amplitude')
title('Envelope Spectrum: Inner Race Fault')
legend('Envelope Spectrum', 'BPFI Harmonics')
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It is shown that most of the energy is focused at BPFI and its harmonics. That indicates an inner race
fault of the bearing, which matches the fault type of the data.

Applying Envelope Spectrum Analysis to Other Fault Types

Now repeat the same envelope spectrum analysis on normal data and outer race fault data.

dataNormal = load(fullfile(matlabroot, 'toolbox', 'predmaint', ...
    'predmaintdemos', 'bearingFaultDiagnosis', ...
    'train_data', 'baseline_1.mat'));
xNormal = dataNormal.bearing.gs;
fsNormal = dataNormal.bearing.sr;
tNormal = (0:length(xNormal)-1)/fsNormal;
[pEnvNormal, fEnvNormal] = envspectrum(xNormal, fsNormal);

figure
plot(fEnvNormal, pEnvNormal)
ncomb = 10;
helperPlotCombs(ncomb, [dataNormal.BPFO dataNormal.BPFI])
xlim([0 1000])
xlabel('Frequency (Hz)')
ylabel('Peak Amplitude')
title('Envelope Spectrum: Normal')
legend('Envelope Spectrum', 'BPFO Harmonics', 'BPFI Harmonics')
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As expected, the envelope spectrum of a normal bearing signal does not show any significant peaks at
BPFO or BPFI.

dataOuter = load(fullfile(matlabroot, 'toolbox', 'predmaint', ...
    'predmaintdemos', 'bearingFaultDiagnosis', ...
    'train_data', 'OuterRaceFault_2.mat'));
xOuter = dataOuter.bearing.gs;
fsOuter = dataOuter.bearing.sr;
tOuter = (0:length(xOuter)-1)/fsOuter;
[pEnvOuter, fEnvOuter, xEnvOuter, tEnvOuter] = envspectrum(xOuter, fsOuter);

figure
plot(fEnvOuter, pEnvOuter)
ncomb = 10;
helperPlotCombs(ncomb, dataOuter.BPFO)
xlim([0 1000])
xlabel('Frequency (Hz)')
ylabel('Peak Amplitude')
title('Envelope Spectrum: Outer Race Fault')
legend('Envelope Spectrum', 'BPFO Harmonics')
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For an outer race fault signal, there are no clear peaks at BPFO harmonics either. Does envelope
spectrum analysis fail to differentiate bearing with outer race fault from healthy bearings? Let's take
a step back and look at the signals in time domain under different conditions again.

First let's visualize the signals in time domain again and calculate their kurtosis. Kurtosis is the
fourth standardized moment of a random variable. It characterizes the impulsiveness of the signal or
the heaviness of the random variable's tail.

figure
subplot(3, 1, 1)
kurtInner = kurtosis(xInner);
plot(tInner, xInner)
ylabel('Acceleration (g)')
title(['Inner Race Fault, kurtosis = ' num2str(kurtInner)])
xlim([0 0.1])

subplot(3, 1, 2)
kurtNormal = kurtosis(xNormal);
plot(tNormal, xNormal)
ylabel('Acceleration (g)')
title(['Normal, kurtosis = ' num2str(kurtNormal)])
xlim([0 0.1])

subplot(3, 1, 3)
kurtOuter = kurtosis(xOuter);
plot(tOuter, xOuter)
xlabel('Time (s)')
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ylabel('Acceleration (g)')
title(['Outer Race Fault, kurtosis = ' num2str(kurtOuter)])
xlim([0 0.1])

It is shown that inner race fault signal has significantly larger impulsiveness, making envelope
spectrum analysis capture the fault signature at BPFI effectively. For an outer race fault signal, the
amplitude modulation at BPFO is slightly noticeable, but it is masked by strong noise. The normal
signal does not show any amplitude modulation. Extracting the impulsive signal with amplitude
modulation at BPFO (or enhancing the signal-to-noise ratio) is a key preprocessing step before
envelope spectrum analysis. The next section will introduce kurtogram and spectral kurtosis to
extract the signal with highest kurtosis, and perform envelope spectrum analysis on the filtered
signal.

Kurtogram and Spectral Kurtosis for Band Selection

Kurtogram and spectral kurtosis compute kurtosis locally within frequency bands. They are powerful
tools to locate the frequency band that has the highest kurtosis (or the highest signal-to-noise ratio)
[2]. After pinpointing the frequency band with the highest kurtosis, a bandpass filter can be applied
to the raw signal to obtain a more impulsive signal for envelope spectrum analysis.

level = 9;
figure
kurtogram(xOuter, fsOuter, level)
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The kurtogram indicates that the frequency band centered at 2.67 kHz with a 0.763 kHz bandwidth
has the highest kurtosis of 2.71.

Now use the optimal window length suggested by the kurtogram to compute the spectral kurtosis.

figure
wc = 128;
pkurtosis(xOuter, fsOuter, wc)
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To visualize the frequency band on a spectrogram, compute the spectrogram and place the spectral
kurtosis on the side. To interpret the spectral kurtosis in another way, high spectral kurtosis values
indicates high variance of power at the corresponding frequency, which makes spectral kurtosis a
useful tool to locate nonstationary components of the signal [3].

helperSpectrogramAndSpectralKurtosis(xOuter, fsOuter, level)
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By bandpass filtering the signal with the suggested center frequency and bandwidth, the kurtosis can
be enhanced and the modulated amplitude of the outer race fault can be retrieved.

[~, ~, ~, fc, ~, BW] = kurtogram(xOuter, fsOuter, level);

bpf = designfilt('bandpassfir', 'FilterOrder', 200, 'CutoffFrequency1', fc-BW/2, ...
    'CutoffFrequency2', fc+BW/2, 'SampleRate', fsOuter);
xOuterBpf = filter(bpf, xOuter);
[pEnvOuterBpf, fEnvOuterBpf, xEnvOuterBpf, tEnvBpfOuter] = envspectrum(xOuter, fsOuter, ...
    'FilterOrder', 200, 'Band', [fc-BW/2 fc+BW/2]);

figure
subplot(2, 1, 1)
plot(tOuter, xOuter, tEnvOuter, xEnvOuter)
ylabel('Acceleration (g)')
title(['Raw Signal: Outer Race Fault, kurtosis = ', num2str(kurtOuter)])
xlim([0 0.1])
legend('Signal', 'Envelope')

subplot(2, 1, 2)
kurtOuterBpf = kurtosis(xOuterBpf);
plot(tOuter, xOuterBpf, tEnvBpfOuter, xEnvOuterBpf)
ylabel('Acceleration (g)')
xlim([0 0.1])
xlabel('Time (s)')
title(['Bandpass Filtered Signal: Outer Race Fault, kurtosis = ', num2str(kurtOuterBpf)])
legend('Signal', 'Envelope')

 Rolling Element Bearing Fault Diagnosis

4-19



It can be seen that the kurtosis value is increased after bandpass filtering. Now visualize the envelope
signal in frequency domain.

figure
plot(fEnvOuterBpf, pEnvOuterBpf);
ncomb = 10;
helperPlotCombs(ncomb, dataOuter.BPFO)
xlim([0 1000])
xlabel('Frequency (Hz)')
ylabel('Peak Amplitude')
title('Envelope Spectrum of Bandpass Filtered Signal: Outer Race Fault ')
legend('Envelope Spectrum', 'BPFO Harmonics')
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It is shown that by bandpass filtering the raw signal with the frequency band suggested by kurtogram
and spectral kurtosis, the envelope spectrum analysis is able to reveal the fault signature at BPFO
and its harmonics.

Batch Process

Now let's apply the algorithm to a batch of training data using a file ensemble datastore.

A limited portion of the dataset is available in the toolbox. Copy the dataset to the current folder and
enable the write permission:

copyfile(...
    fullfile(matlabroot, 'toolbox', 'predmaint', 'predmaintdemos', ...
    'bearingFaultDiagnosis'), ...
    'RollingElementBearingFaultDiagnosis-Data-master')
fileattrib(fullfile('RollingElementBearingFaultDiagnosis-Data-master', 'train_data', '*.mat'), '+w')
fileattrib(fullfile('RollingElementBearingFaultDiagnosis-Data-master', 'test_data', '*.mat'), '+w')

For the full dataset, go to this link https://github.com/mathworks/
RollingElementBearingFaultDiagnosis-Data to download the entire repository as a zip file and save it
in the same directory as the live script. Unzip the file using this command:

if exist('RollingElementBearingFaultDiagnosis-Data-master.zip', 'file')
    unzip('RollingElementBearingFaultDiagnosis-Data-master.zip')
end
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The results in this example are generated from the full dataset. The full dataset contains a training
dataset with 14 mat files (2 normal, 4 inner race fault, 7 outer race fault) and a testing dataset with 6
mat files (1 normal, 2 inner race fault, 3 outer race fault).

By assigning function handles to ReadFcn and WriteToMemberFcn, the file ensemble datastore will
be able to navigate into the files to retrieve data in the desired format. For example, the MFPT data
has a structure bearing that stores the vibration signal gs, sampling rate sr, and so on. Instead of
returning the bearing structure itself the readMFPTBearing function is written so that file ensemble
datastore returns the vibration signal gs inside of the bearing data structure.

fileLocation = fullfile('.', 'RollingElementBearingFaultDiagnosis-Data-master', 'train_data');
fileExtension = '.mat';
ensembleTrain = fileEnsembleDatastore(fileLocation, fileExtension);
ensembleTrain.ReadFcn = @readMFPTBearing;
ensembleTrain.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF"];
ensembleTrain.ConditionVariables = ["Label", "FileName"];
ensembleTrain.WriteToMemberFcn = @writeMFPTBearing;
ensembleTrain.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF", "Label", "FileName"]

ensembleTrain = 
  fileEnsembleDatastore with properties:

                 ReadFcn: @readMFPTBearing
        WriteToMemberFcn: @writeMFPTBearing
           DataVariables: [8×1 string]
    IndependentVariables: [0×0 string]
      ConditionVariables: [2×1 string]
       SelectedVariables: [10×1 string]
                ReadSize: 1
              NumMembers: 14
          LastMemberRead: [0×0 string]
                   Files: [14×1 string]

ensembleTrainTable = tall(ensembleTrain)

Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.

ensembleTrainTable =

  M×10 tall table

           gs             sr      rate    load     BPFO      BPFI      FTF       BSF           Label                   FileName        
    _________________    _____    ____    ____    ______    ______    ______    _____    __________________    ________________________

    [146484×1 double]    48828     25       0     81.125    118.88    14.838    63.91    "Inner Race Fault"    "InnerRaceFault_vload_1"
    [146484×1 double]    48828     25      50     81.125    118.88    14.838    63.91    "Inner Race Fault"    "InnerRaceFault_vload_2"
    [146484×1 double]    48828     25     100     81.125    118.88    14.838    63.91    "Inner Race Fault"    "InnerRaceFault_vload_3"
    [146484×1 double]    48828     25     150     81.125    118.88    14.838    63.91    "Inner Race Fault"    "InnerRaceFault_vload_4"
    [146484×1 double]    48828     25     200     81.125    118.88    14.838    63.91    "Inner Race Fault"    "InnerRaceFault_vload_5"
    [585936×1 double]    97656     25     270     81.125    118.88    14.838    63.91    "Outer Race Fault"    "OuterRaceFault_1"      
    [585936×1 double]    97656     25     270     81.125    118.88    14.838    63.91    "Outer Race Fault"    "OuterRaceFault_2"      
    [146484×1 double]    48828     25      25     81.125    118.88    14.838    63.91    "Outer Race Fault"    "OuterRaceFault_vload_1"
            :              :       :       :        :         :         :         :              :                        :
            :              :       :       :        :         :         :         :              :                        :
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From the last section of analysis, notice that the bandpass filtered envelope spectrum amplitudes at
BPFO and BPFI are two condition indicators for bearing fault diagnosis. Therefore, the next step is to
extract the two condition indicators from all the training data. To make the algorithm more robust,
set a narrow band (bandwidth = 10Δf , where Δf  is the frequency resolution of the power spectrum)
around BPFO and BPFI, and then find the maximum amplitude inside this narrow band. The
algorithm is contained in the bearingFeatureExtraction function listed below. Note that the
envelope spectrum amplitudes around BPFI and BPFO are referred to as "BPFIAmplitude" and
"BPFOAmplitude" in the rest of the example.

% To process the data in parallel, use the following code
% ppool = gcp;
% n = numpartitions(ensembleTrain, ppool);
% parfor ct = 1:n
%     subEnsembleTrain = partition(ensembleTrain, n, ct);
%     reset(subEnsembleTrain);
%     while hasdata(subEnsembleTrain)
%         bearingFeatureExtraction(subEnsembleTrain);
%     end
% end
ensembleTrain.DataVariables = [ensembleTrain.DataVariables; "BPFIAmplitude"; "BPFOAmplitude"];
reset(ensembleTrain)
while hasdata(ensembleTrain)
    bearingFeatureExtraction(ensembleTrain)
end

Once the new condition indicators are added into the file ensemble datastore, specify
SelectedVariables to read the relevant data from the file ensemble datastore, and create a
feature table containing the extracted condition indicators.

ensembleTrain.SelectedVariables = ["BPFIAmplitude", "BPFOAmplitude", "Label"];
featureTableTrain = tall(ensembleTrain);
featureTableTrain = gather(featureTableTrain);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete
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- Pass 1 of 1: Completed in 3 sec
Evaluation completed in 3 sec

featureTableTrain

featureTableTrain=14×3 table
    BPFIAmplitude    BPFOAmplitude          Label       
    _____________    _____________    __________________

        0.33918         0.082296      "Inner Race Fault"
        0.31488         0.026599      "Inner Race Fault"
        0.52356         0.036609      "Inner Race Fault"
        0.52899         0.028381      "Inner Race Fault"
        0.13515         0.012337      "Inner Race Fault"
       0.004024          0.03574      "Outer Race Fault"
      0.0044918           0.1835      "Outer Race Fault"
      0.0074993          0.30166      "Outer Race Fault"
       0.013662          0.12468      "Outer Race Fault"
      0.0070963          0.28215      "Outer Race Fault"
      0.0060772          0.35241      "Outer Race Fault"
       0.011244          0.17975      "Outer Race Fault"
      0.0036798        0.0050208      "Normal"          
        0.00359        0.0069449      "Normal"          

Visualize the feature table that has been created.
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figure
gscatter(featureTableTrain.BPFIAmplitude, featureTableTrain.BPFOAmplitude, featureTableTrain.Label, [], 'ox+')
xlabel('BPFI Amplitude')
ylabel('BPFO Amplitude')

The relative values of BPFI Amplitude and BPFO Amplitude might be an effective indicator of
different fault types. Here a new feature is created, which is the log ratio of the two existing features,
and is visualized in a histogram grouped by different fault types.

featureTableTrain.IOLogRatio = log(featureTableTrain.BPFIAmplitude./featureTableTrain.BPFOAmplitude);
figure
hold on
histogram(featureTableTrain.IOLogRatio(featureTableTrain.Label=="Inner Race Fault"), 'BinWidth', 0.5)
histogram(featureTableTrain.IOLogRatio(featureTableTrain.Label=="Outer Race Fault"), 'BinWidth', 0.5)
histogram(featureTableTrain.IOLogRatio(featureTableTrain.Label=="Normal"), 'BinWidth', 0.5)
plot([-1.5 -1.5 NaN 0.5 0.5], [0 3 NaN 0 3], 'k--')
hold off
ylabel('Count')
xlabel('log(BPFIAmplitude/BPFOAmplitude)')
legend('Inner Race Fault', 'Outer Race Fault', 'Normal', 'Classification Boundary')
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The histogram shows a clear separation among the three different bearing conditions. The log ratio
between the BPFI and BPFO amplitudes is a valid feature to classify bearing faults. To simplify the
example, a very simple classifier is derived: if log BPFIAmplitude

BPFOAmplitude ≤ − 1 . 5, the bearing has an outer

race fault; if −1 . 5 < log BPFIAmplitude
BPFOAmplitude ≤ 0 . 5, the bearing is normal; and if log BPFIAmplitude

BPFOAmplitude > 0 . 5,
the bearing has an inner race fault.

Validation using Test Data Sets

Now, let's apply the workflow to a test data set and validate the classifier obtained in the last section.
Here the test data contains 1 normal data set, 2 inner race fault data sets, and 3 outer race fault data
sets.

fileLocation = fullfile('.', 'RollingElementBearingFaultDiagnosis-Data-master', 'test_data');
fileExtension = '.mat';
ensembleTest = fileEnsembleDatastore(fileLocation, fileExtension);
ensembleTest.ReadFcn = @readMFPTBearing;
ensembleTest.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF"];
ensembleTest.ConditionVariables = ["Label", "FileName"];
ensembleTest.WriteToMemberFcn = @writeMFPTBearing;
ensembleTest.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF", "Label", "FileName"]

ensembleTest = 
  fileEnsembleDatastore with properties:

                 ReadFcn: @readMFPTBearing
        WriteToMemberFcn: @writeMFPTBearing
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           DataVariables: [8×1 string]
    IndependentVariables: [0×0 string]
      ConditionVariables: [2×1 string]
       SelectedVariables: [10×1 string]
                ReadSize: 1
              NumMembers: 6
          LastMemberRead: [0×0 string]
                   Files: [6×1 string]

ensembleTest.DataVariables = [ensembleTest.DataVariables; "BPFIAmplitude"; "BPFOAmplitude"];
reset(ensembleTest)
while hasdata(ensembleTest)
    bearingFeatureExtraction(ensembleTest)
end

ensembleTest.SelectedVariables = ["BPFIAmplitude", "BPFOAmplitude", "Label"];
featureTableTest = tall(ensembleTest);
featureTableTest = gather(featureTableTest);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 sec
Evaluation completed in 1 sec

featureTableTest.IOLogRatio = log(featureTableTest.BPFIAmplitude./featureTableTest.BPFOAmplitude);

figure
hold on
histogram(featureTableTrain.IOLogRatio(featureTableTrain.Label=="Inner Race Fault"), 'BinWidth', 0.5)
histogram(featureTableTrain.IOLogRatio(featureTableTrain.Label=="Outer Race Fault"), 'BinWidth', 0.5)
histogram(featureTableTrain.IOLogRatio(featureTableTrain.Label=="Normal"), 'BinWidth', 0.5)

histogram(featureTableTest.IOLogRatio(featureTableTest.Label=="Inner Race Fault"), 'BinWidth', 0.1)
histogram(featureTableTest.IOLogRatio(featureTableTest.Label=="Outer Race Fault"), 'BinWidth', 0.1)
histogram(featureTableTest.IOLogRatio(featureTableTest.Label=="Normal"), 'BinWidth', 0.1)
plot([-1.5 -1.5 NaN 0.5 0.5], [0 3 NaN 0 3], 'k--')
hold off
ylabel('Count')
xlabel('log(BPFIAmplitude/BPFOAmplitude)')
legend('Inner Race Fault - Train', 'Outer Race Fault - Train', 'Normal - Train', ...
    'Inner Race Fault - Test', 'Outer Race Fault - Test', 'Normal - Test', ...
    'Classification Boundary')
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The log ratio of BPFI and BPFO amplitudes from test data sets shows consistent distribution with the
log ratio from training data sets. The naive classifier obtained in the last section achieved perfect
accuracy on the test data set.

It should be noted that single feature is usually not enough to get a classifier that generalizes well.
More sophisticated classifiers could be obtained by dividing the data into multiple pieces (to create
more data points), extract multiple diagnosis related features, select a subset of features by their
importance ranks, and train various classifiers using the Classification Learner App in Statistics &
Machine Learning Toolbox. For more details of this workflow, please refer to the example "Using
Simulink to generate fault data".

Summary

This example shows how to use kurtogram, spectral kurtosis and envelope spectrum to identify
different types of faults in rolling element bearings. The algorithm is then applied to a batch of data
sets in disk, which helped show that the amplitudes of bandpass filtered envelope spectrum at BPFI
and BPFO are two important condition indicators for bearing diagnostics.
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Helper Functions

function bearingFeatureExtraction(ensemble)
% Extract condition indicators from bearing data
data = read(ensemble);
x = data.gs{1};
fs = data.sr;

% Critical Frequencies
BPFO = data.BPFO;
BPFI = data.BPFI;

level = 9;
[~, ~, ~, fc, ~, BW] = kurtogram(x, fs, level);

% Bandpass filtered Envelope Spectrum
[pEnvpBpf, fEnvBpf] = envspectrum(x, fs, 'FilterOrder', 200, 'Band', [max([fc-BW/2 0]) min([fc+BW/2 0.999*fs/2])]);
deltaf = fEnvBpf(2) - fEnvBpf(1);

BPFIAmplitude = max(pEnvpBpf((fEnvBpf > (BPFI-5*deltaf)) & (fEnvBpf < (BPFI+5*deltaf))));
BPFOAmplitude = max(pEnvpBpf((fEnvBpf > (BPFO-5*deltaf)) & (fEnvBpf < (BPFO+5*deltaf))));

writeToLastMemberRead(ensemble, table(BPFIAmplitude, BPFOAmplitude, 'VariableNames', {'BPFIAmplitude', 'BPFOAmplitude'}));
end

See Also
fileEnsembleDatastore

More About
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
• “Decision Models for Fault Detection and Diagnosis” on page 4-2
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Fault Diagnosis of Centrifugal Pumps Using Steady State
Experiments

This example shows a model based approach for detection and diagnosis of different types of faults
that occur in a pumping system. The example follows the centrifugal pump analysis presented in the
Fault Diagnosis Applications book by Rolf Isermann [1].

Pump Supervision and Fault Detection

Pumps are essential equipment in many industries including power and chemical, mineral and
mining, manufacturing, heating, air conditioning and cooling. Centrifugal pumps are used to
transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid
flow. The rotational energy typically comes from a combustion engine or electric motor. The fluid
enters the pump impeller along or near to the rotating axis and is accelerated by the impeller, flowing
radially outward into a diffuser.
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Pumps experience damage to their hydraulic or mechanical components. The most frequently faulting
components are the sliding ring seals and the ball bearings, although failures to other components
including the driving motor, impeller blades and sliding bearings are also not uncommon. The table
below lists the most common types of faults.

• Cavitation: Development of vapor bubbles inside the fluid if static pressure falls below vapor
pressure. Bubbles collapse abruptly leading to damage at the blade wheels.

• Gas in fluid: A pressure drop leads to dissolved gas in the fluid. A separation of gas and liquid
and lower head results.

• Dry Run: Missing fluid leads to lack of cooling and overheating of bearing. Important for starting
phase.

• Erosion: Mechanical damage to the walls because of hard particles or cavitation
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• Corrosion: Damage by aggressive fluids
• Bearing wear: Mechanical damage through fatigue and metal friction, generation of pitting and

tears
• Plugging of relief bore holes: Leads to overloading/damage of axial bearings
• Plugging of sliding ring seals: Leads to higher friction and smaller efficiency
• Increase of split seals: Leads to loss of efficiency
• Deposits: Deposits of organic material or through chemical reactions at the rotor entrance or

outlet reduce efficiency and increase temperature.
• Oscillations: Rotor imbalance through damage or deposits at the rotor. Can cause bearing

damage.

Available Sensors

The following signals are typically measured:

• Pressure difference between the inlet and outlet Δp
• Rotational speed ω
• Motor torque Mmot and pump torque Mp

• Fluid discharge (flow) rate at the pump outlet Q
• Driving motor current, voltage, temperature (not considered here)
• Fluid temperature, sediments (not considered here)

Mathematical Models of Pump and Pipe System

A torqueMapplied to the rotor of a radial centrifugal pump leads to a rotational speed ω and
transmits a momentum increase of the pump fluid from the rotor inlet of a smaller radius to the rotor
outlet of a larger radius. Euler's turbine equations yields the relationship between the pressure
differential Δp, speed ω and fluid discharge rate (flow rate) Q:

Hth = h1ω2− h2ωQ

where Hth = Δp
ρg  is the theoretical (ideal; without losses) pump head measured in meters and h1, h2

are proportionality constants. When accounting for a finite number of impeller blades, friction losses
and impact losses due to non-tangential flow, the real pump head is given by:

H = hnnω2− hnvωQ− hvvQ2

where hnn, hnv and hvv are proportionality constants to be treated as model parameters. The
corresponding pump torque is:

MP = ρg(hnnωQ− hnvQ2− hvv
Q3

ω )

The mechanical parts of the motor and the pump cause the speed to increase when torque is applied
according to:

JP
dω(t)

dt = Mmot(t) −MP(t) −Mf (t)
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where JP is the ratio of inertia of the motor and the pump, and Mf  is the frictional torque consisting
of Coulomb friction Mf0 and viscous friction Mf1ω(t) according to:

Mf (t) = Mf0 sign ω(t) + Mf1ω(t)

The pump is connected to a piping system that transports the fluid from a lower storage tank to an
upper one. The momentum balance equation yields:

H(t) = aF
dQ(t)

dt + hrrQ2(t) + Hstatic

where hrr is a resistance coefficient of the pipe, aF = l
gA  with pipe length l and cross-sectional area

A, and Hstatic is the height of the storage over the pump. The model parameters hnn, hnv, hvv are either
known from physics or can be estimated by fitting the measured sensor signals to the inputs/outputs
of the model. The type of the model used may depend upon the operating conditions under which the
pump is run. For example, full nonlinear model of the pump-pipe system may not be required if the
pump is always run at a constant angular speed.

Fault Detection Techniques

Faults can be detected by examining certain features extracted from the measurements and
comparing them to known thresholds of acceptable behavior. The detectability and isolability of
different faults depends upon the nature of the experiment and availability of measurements. For
example, a constant-speed analysis with pressure measurements only can detect faults causing large
pressure changes. Furthermore, it cannot reliably assess the cause of the failure. However, a multi-
speed experiment with measurements of pressure differential, motor torque and flow rate can detect
and isolate many sources of faults such as those originating from gas enclosures, dry run, large
deposits, motor defects etc.

A model based approach employs the following techniques:

1 Parameter estimation: Using the measurements from the healthy (nominal) operation of the
machine, the parameters of the model are estimated and their uncertainty is quantified. The test
system measurements are then used to re-estimate the parameter values and the resulting
estimates are compared against their nominal values. This technique is the main topic of this
example.

2 Residue generation: A model is trained as before for a healthy machine. The output of the model
is compared against the measured observations from a test system and a residual signal is
computed. This signal is analyzed for its magnitude, variance and other properties to detect
faults. A large number of residues may be designed and employed to distinguish different sources
of faults. This technique is discussed in the Fault Diagnosis of Centrifugal Pumps using Residual
Analysis example.

Constant Speed Experimentation: Fault Analysis by Parameter Estimation

A common practice for pump calibration and supervision is to run it at a constant speed and record
the pump's static head and fluid discharge rate. By changing the valve position in the piping system,
the fluid discharge volume (GPM) is regulated. An increase in discharge rate causes the pump head
to decrease. The pump's measured head characteristics can be compared against the manufacturer-
supplied values. Any differences would indicate possibility of faults. The measurements for delivery
head and flow discharge rate were obtained by simulations of a pump-pipe system model in Simulink.
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At a nominal speed of 2900 RPM, the ideal pump head characteristics for a healthy pump supplied by
the manufacturer are as shown.

url = 'https://www.mathworks.com/supportfiles/predmaint/fault-diagnosis-of-centrifugal-pumps-using-steady-state-experiments/PumpCharacteristicsData.mat';
websave('PumpCharacteristicsData.mat',url);
load PumpCharacteristicsData Q0 H0 M0 % manufacturer supplied data for pump's delivery head
figure
plot(Q0, H0, '--');  
xlabel('Discharge Rate Q (m^3/h)')
ylabel('Pump Head (m)')
title('Pump Delivery Head Characteristics at 2900 RPM')
grid on
legend('Healthy pump')

The faults that cause a discernible change in pump characteristics are:

1 Wear at the clearance gap
2 Wear at the impeller outlet
3 Deposits at the impeller outlet

For analyzing the faulty pumps, the speed, torque and flow rate measurements were collected for
pumps affected by different faults. For example when the fault introduced is in the clearance ring, the
measured head characteristics for pumps show a clear shift in the characteristic curve.

load PumpCharacteristicsData Q1 H1 M1  % signals measured for a pump with a large clearance gap
hold on
plot(Q1, H1);  

load PumpCharacteristicsData Q2 H2 M2  % signals measured for a pump with a small clearance gap
plot(Q2, H2);  
legend('Healthy pump','Large clearance','Small clearance')
hold off
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Similar changes can be seen in torque-flow characteristics and for other fault types.

For automation of fault diagnosis, you turn the observed changes to quantitative information. A
reliable way to do so is to fit a parameterized curve to the head-flow characteristic data plotted
above. Using the pump-pipe dynamics governing equations, and using a simplified torque
relationship, the following equations are obtained:

H ≈ hnnω2− hnvωQ− hvvQ2

Mp ≈ k0ωQ− k1Q2 + k2ω2

hnn, hnv, hvv, k0, k1, k2 are the parameters to be estimated. If you measure ω, Q, H and Mp, the
parameter can be estimated by linear least squares. These parameters are the features that can be
used to develop a fault detection and diagnosis algorithm.

Preliminary Analysis: Comparing parameter values

Compute and plot the parameter values estimated for the above 3 curves. Use the measured values of
Q, H and Mp as data and ω = 2900 RPM as the nominal pump speed.

w = 2900; % RPM
% Healthy pump
[hnn_0, hnv_0, hvv_0, k0_0, k1_0, k2_0] = linearFit(0, {w, Q0, H0, M0});
% Pump with large clearance
[hnn_1, hnv_1, hvv_1, k0_1, k1_1, k2_1] = linearFit(0, {w, Q1, H1, M1});
% Pump with small clearance
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[hnn_2, hnv_2, hvv_2, k0_2, k1_2, k2_2] = linearFit(0, {w, Q2, H2, M2});
X = [hnn_0 hnn_1 hnn_2; hnv_0  hnv_1  hnv_2; hvv_0  hvv_1  hvv_2]';
disp(array2table(X,'VariableNames',{'hnn','hnv','hvv'},...
    'RowNames',{'Healthy','Large Clearance', 'Small Clearance'}))

                          hnn           hnv           hvv   
                       __________    __________    _________

    Healthy            5.1164e-06    8.6148e-05     0.010421
    Large Clearance     4.849e-06     8.362e-05     0.011082
    Small Clearance    5.3677e-06    8.4764e-05    0.0094656

Y = [k0_0 k0_1 k0_2; k1_0  k1_1  k1_2; k2_0  k2_1  k2_2]';
disp(array2table(Y,'VariableNames',{'k0','k1','k2'},...
    'RowNames',{'Healthy','Large Clearance', 'Small Clearance'}))

                           k0           k1           k2    
                       __________    ________    __________

    Healthy            0.00033347    0.016535    2.8212e-07
    Large Clearance    0.00031571    0.016471    3.0285e-07
    Small Clearance    0.00034604    0.015886    2.6669e-07

The tables show that hnn and k0 values reduce when clearance gap is large while they are larger than
nominal values for small clearance. On the other hand, hvv and k2 values increase for large clearance
gap and decrease for small gap. The dependence of hnv and k1 on clearance gap is less clear.

Incorporating Uncertainty

The preliminary analysis showed how parameter changes can indicate fault. However, even for
healthy pumps there are variations in measurements owing to the measurement noise, fluid
contamination and viscosity changes and the slip-torque characteristics of the motor running the
pump. These measurement variations introduce uncertainty in the parameter estimates.

Collect 5 sets of measurements from a pump operating under no-fault condition by running it at 2900
RPM for 10 discharge throttle valve positions.

url = 'https://www.mathworks.com/supportfiles/predmaint/fault-diagnosis-of-centrifugal-pumps-using-steady-state-experiments/FaultDiagnosisData.mat';
websave('FaultDiagnosisData.mat',url);
load FaultDiagnosisData HealthyEnsemble
H = cellfun(@(x)x.Head,HealthyEnsemble,'uni',0);
Q = cellfun(@(x)x.Discharge,HealthyEnsemble,'uni',0);
plot(cat(2,Q{:}),cat(2,H{:}),'k.')
title('Pump Head Characteristics Ensemble for 5 Test Runs')
xlabel('Flow rate (m^3/hed)')
ylabel('Pump head (m)')
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The plot shows variation in characteristics even for a healthy pump under realistic conditions. These
variations have to be taken into consideration for making the fault diagnosis reliable. The next
sections discuss fault detection and isolation techniques for noisy data.

Anomaly Detection

In many situations, the measurements of only the healthy machines are available. In that case, a
statistical description of the healthy state, encapsulated by mean value and covariance of the
parameter vector, can be created using available measurements. The measurements of the test pump
can be compared against the nominal statistics to test whether it is plausible that the test pump is a
healthy pump. A faulty pump is expected to detected as an anomaly in a view of detection features.

Estimate mean and covariance of pump head and torque parameters.

load FaultDiagnosisData HealthyEnsemble
[HealthyTheta1, HealthyTheta2] = linearFit(1, HealthyEnsemble);
meanTheta1 = mean(HealthyTheta1,1);
meanTheta2 = mean(HealthyTheta2,1);
covTheta1  = cov(HealthyTheta1);
covTheta2  = cov(HealthyTheta2);

Visualize the parameter uncertainty as 74% confidence regions, which corresponds to 2 standard
deviations ( chi2inv(0 . 74, 3) ≈ 2). See helper function helperPlotConfidenceEllipsoid for
details.

% Confidence ellipsoid for pump head parameters
f = figure;
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f.Position(3) = f.Position(3)*2;
subplot(121)
helperPlotConfidenceEllipsoid(meanTheta1,covTheta1,2,0.6);   
xlabel('hnn')
ylabel('hnv')
zlabel('hvv')
title('2-sd Confidence Ellipsoid for Pump Head Parameters')
hold on

% Confidence ellipsoid for pump torque parameters
subplot(122)
helperPlotConfidenceEllipsoid(meanTheta2,covTheta2,2,0.6); 
xlabel('k0')
ylabel('k1')
zlabel('k2')
title('2-sd Confidence Ellipsoid for Pump Torque Parameters')
hold on

The grey ellipsoids show confidence regions of healthy pump parameters. Load unlabeled test data
for comparison against the healthy region.

load FaultDiagnosisData TestEnsemble

TestEnsemble contains a set of pump speed, torque, head and flow rate measurements at various
valve positions. All measurements contain clearance gap fault of different magnitudes.

% Test data preview
disp(TestEnsemble{1}(1:5,:)) % first 5 measurement rows from the first ensemble member

      Time       Run    ValvePosition    Speed      Head     Discharge    Torque 
    _________    ___    _____________    ______    ______    _________    _______

    180 sec       1          10          3034.6    12.367     35.339      0.35288
    180.1 sec     1          10          2922.1    9.6762     36.556       4.6953
    180.2 sec     1          10          2636.1    11.168     36.835       9.8898
    180.3 sec     1          10          2717.4    10.562      40.22      -12.598
    180.4 sec     1          10          3183.7     10.55     40.553       14.672

Compute test parameters. See helper function linearFit.

% TestTheta1: pump head parameters
% TestTheta2: pump torque parameters
[TestTheta1,TestTheta2] = linearFit(1, TestEnsemble);
subplot(121)
plot3(TestTheta1(:,1),TestTheta1(:,2),TestTheta1(:,3),'g*')
view([-42.7 10])
subplot(122)
plot3(TestTheta2(:,1),TestTheta2(:,2),TestTheta2(:,3),'g*')
view([-28.3 18])
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Each green star marker is contributed by one test pump. The markers that are outside the confidence
bounds can be treated as outliers while those inside are either from a healthy pump or escaped
detection. Note that a marker from a particular pump may be marked as anomalous in the pump head
view but not in the pump torque view. This could be owing to different sources of faults being
detected by these views, or the underlying reliability of pressure and torque measurements.

Quantifying Anomaly Detection Using Confidence Regions

In this section a way of utilizing the confidence region information for detection and assessing
severity of faults is discussed. The technique is to compute the "distance" of a test sample from the
mean or median of the healthy region distribution. The distance must be relative to the normal
"spread" of the healthy parameter data represented by its covariance. The function MAHAL computes
the Mahalanobis distance of test samples from the distribution of a reference sample set (the healthy
pump parameter set here):

ParDist1 = mahal(TestTheta1, HealthyTheta1);  % for pump head parameters

If you assume 74% confidence bound (2 standard deviations) as acceptable variation for healthy data,
any values in ParDist1 that are greater than 2^2 = 4 should be tagged as anomalous and hence
indicative of faulty behavior.

Add the distance values to the plot. The red lines mark the anomalous test samples. See helper
function helperAddDistanceLines.

Threshold = 2;
disp(table((1:length(ParDist1))',ParDist1, ParDist1>Threshold^2,...
    'VariableNames',{'PumpNumber','SampleDistance','Anomalous'}))

    PumpNumber    SampleDistance    Anomalous
    __________    ______________    _________

         1            58.874          true   
         2            24.051          true   
         3             6.281          true   
         4            3.7179          false  
         5             13.58          true   
         6            3.0723          false  
         7            2.0958          false  
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         8            4.7127          true   
         9            26.829          true   
        10           0.74682          false  

helperAddDistanceLines(1, ParDist1, meanTheta1, TestTheta1, Threshold);

Similarly for pump torque:

ParDist2 = mahal(TestTheta2, HealthyTheta2);  % for pump torque parameters
disp(table((1:length(ParDist2))',ParDist2, ParDist2>Threshold^2,...
    'VariableNames',{'PumpNumber','SampleDistance','Anomalous'}))

    PumpNumber    SampleDistance    Anomalous
    __________    ______________    _________

         1            9.1381          true   
         2            5.4249          true   
         3            3.0565          false  
         4             3.775          false  
         5           0.77961          false  
         6            7.5508          true   
         7            3.3368          false  
         8           0.74834          false  
         9            3.6478          false  
        10            1.0241          false  

helperAddDistanceLines(2, ParDist2, meanTheta2, TestTheta2, Threshold);
view([8.1 17.2])

The plots now not only show detection of the anomalous samples but also quantify their severity.

Quantifying Anomaly Detection Using One-Class Classifier

Another effective technique to flag anomalies is to build a one-class classifier for the healthy
parameter dataset. Train an SVM classifier using the healthy pump parameter data. Since there are
no fault labels utilized, treat all samples as coming from the same (healthy) class. Since changes in
parameters hnn and hvv are most indicative of potential faults, use only these parameters for training
the SVM classifier.
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nc = size(HealthyTheta1,1);
rng(2)  % for reproducibility
SVMOneClass1 = fitcsvm(HealthyTheta1(:,[1 3]),ones(nc,1),...
    'KernelScale','auto',...
    'Standardize',true,...
    'OutlierFraction',0.0455);

Plot the test observations and the decision boundary. Flag the support vectors and potential outliers.
See helper function helperPlotSVM.

figure
helperPlotSVM(SVMOneClass1,TestTheta1(:,[1 3]))
title('SVM Anomaly Detection for Pump Head Parameters')
xlabel('hnn')
ylabel('hvv')

The boundary separating the outliers from the rest of the data occurs where the contour value is 0;
this is the level curve marked with "0" in the plot. The outliers are marked with red circles. A similar
analysis can be performed for torque parameters.

SVMOneClass2 = fitcsvm(HealthyTheta2(:,[1 3]),ones(nc,1),...
    'KernelScale','auto',...
    'Standardize',true,...
    'OutlierFraction',0.0455);
figure
helperPlotSVM(SVMOneClass2,TestTheta2(:,[1 3]))
title('SVM Anomaly Detection for Torque Parameters')
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xlabel('k0')
ylabel('k2')

A similar analysis can be carried out for detecting other kinds of faults such as wear or deposits at
impeller outlet as discussed next in the context of fault isolation.

Fault Isolation Using Steady-State Parameters as Features

If the information on the type of fault(s) in the test system is available, it can be used to create
algorithms that not only detect faults but also indicate their type.

A. Distinguishing Clearance Gap Faults by Likelihood Ratio Tests

Changes in clearance gap can be split into two types - smaller than expected gap (yellow line in the
pump head characteristic plot) and larger than expected gap (red line). Load pump test datasets
containing clearance gap faults where the nature of fault (large or small) is known in advance. Use
these fault labels to perform 3-way classification among the following modes:

• Mode 1: Normal clearance gap (healthy behavior)
• Mode 2: Large clearance gap
• Mode 3: Small clearance gap

url = 'https://www.mathworks.com/supportfiles/predmaint/fault-diagnosis-of-centrifugal-pumps-using-steady-state-experiments/LabeledGapClearanceData.mat';
websave('LabeledGapClearanceData.mat',url);
load LabeledGapClearanceData HealthyEnsemble LargeGapEnsemble SmallGapEnsemble
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The ensembles contain data from 50 independent experiments. Fit steady-state linear models as
before to parameterize the pump head and torque data.

[HealthyTheta1, HealthyTheta2] = linearFit(1,HealthyEnsemble);
[LargeTheta1, LargeTheta2]     = linearFit(1,LargeGapEnsemble);
[SmallTheta1, SmallTheta2]     = linearFit(1,SmallGapEnsemble);

Plot the parameter histograms to check if there is separability among the 3 modes. The function
histfit is used to plot the histograms and the corresponding fitted normal distribution curves. See
helper function helperPlotHistogram.

Pump head parameters:

helperPlotHistogram(HealthyTheta1, LargeTheta1, SmallTheta1, {'hnn','hnv','hvv'})
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The histogram shows that hnn offers good separability among the three modes but hnv, hvv parameters
have overlapping probability distribution functions (PDFs).
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Pump torque parameters:

helperPlotHistogram(HealthyTheta2, LargeTheta2, SmallTheta2, {'k0','k1','k2'})
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For the Torque parameters, the individual separability is not very good. There is still some variation
in mean and variances that can be exploited by a trained 3-mode classifier. If the PDFs show good
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separation in mean or variance, you can design likelihood ratio tests to quickly assign a test dataset
to the most likely mode. This is shown next for the pump head parameters.

Let:

• Η0: hypothesis that head parameters belong to the healthy pump mode
• Η1: hypothesis that head parameters belong to the pump with large clearance gap
• Η2: hypothesis that head parameters belong to the pump with small clearance gap

Consider the available parameter sets as test samples for mode prediction. Assign the predicted
mode as belonging to one for which the joint PDF has the highest value (Hypothesis Η0 is selected
over Η1 if p H0 > p H1 ). Then plot the results comparing the true and predicted modes in a
confusion matrix. Function mvnpdf is used for computing the PDF value and the functions
confusionmatrix and heatmap are used for confusion matrix visualization. See helper function
pumpModeLikelihoodTest.

% Pump head confusion matrix
figure
pumpModeLikelihoodTest(HealthyTheta1, LargeTheta1, SmallTheta1)

The confusion plot shows perfect separation between the three modes, which is not surprising given
the clear separation among the histograms for hnn parameters.

% Pump torque confusion matrix
pumpModeLikelihoodTest(HealthyTheta2, LargeTheta2, SmallTheta2)
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The results are slightly worse for the torque parameters. Still, the success rate is quite high (97%)
even though the PDFs of the three modes overlapped significantly. This is because the PDF value
calculation is affected both by the location (mean) as well as the amplitude (variance).

B. Multi-Class Classification of Fault Modes Using Tree Bagging

In this section, another classification technique is discussed that is more suitable when classification
among a larger number of modes is required. Consider the following fault modes of operation of the
pump:

1 Healthy operation
2 Wear at clearance gap
3 Small deposits at impeller outlet
4 Deposits at impeller inlet
5 Abrasive wear at impeller outlet
6 Broken blade
7 Cavitation

The classification problem is harder because there are only three parameters computed and you need
to distinguish among 7 modes of operation. Thus, not only you have to compare the estimated
parameters for each fault mode to the healthy mode, but also to each other - both the direction
(increase or reduction in value) and magnitude (10% change vs. 70% change) of the parameter
change must be taken into consideration.
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Here the use of TreeBagger classifier for this problem is shown. Tree Bagger is an ensemble learning
technique that uses bootstrap aggregation (bagging) of features to create decision trees that classify
labeled data. 50 labeled datasets are collected for the 7 modes of operation. Estimate pump head
parameters for each dataset and train the classifier using a subset of the parameter estimates from
each mode.

url = 'https://www.mathworks.com/supportfiles/predmaint/fault-diagnosis-of-centrifugal-pumps-using-steady-state-experiments/MultipleFaultsData.mat';
websave('MultipleFaultsData.mat',url);
load MultipleFaultsData
% Compute pump head parameters
HealthyTheta = linearFit(1, HealthyEnsemble);
Fault1Theta  = linearFit(1, Fault1Ensemble);
Fault2Theta  = linearFit(1, Fault2Ensemble);
Fault3Theta  = linearFit(1, Fault3Ensemble);
Fault4Theta  = linearFit(1, Fault4Ensemble);
Fault5Theta  = linearFit(1, Fault5Ensemble);
Fault6Theta  = linearFit(1, Fault6Ensemble);

% Generate labels for each mode of operation
Label = {'Healthy','ClearanceGapWear','ImpellerOutletDeposit',...
    'ImpellerInletDeposit','AbrasiveWear','BrokenBlade','Cavitation'};
VarNames = {'hnn','hnv','hvv','Condition'};
% Assemble results in a table with parameters and corresponding labels 
N = 50; 
T0 = [array2table(HealthyTheta),repmat(Label(1),[N,1])];
T0.Properties.VariableNames = VarNames;
T1 = [array2table(Fault1Theta), repmat(Label(2),[N,1])];
T1.Properties.VariableNames = VarNames;
T2 = [array2table(Fault2Theta), repmat(Label(3),[N,1])];
T2.Properties.VariableNames = VarNames;
T3 = [array2table(Fault3Theta), repmat(Label(4),[N,1])];
T3.Properties.VariableNames = VarNames;
T4 = [array2table(Fault4Theta), repmat(Label(5),[N,1])];
T4.Properties.VariableNames = VarNames;
T5 = [array2table(Fault5Theta), repmat(Label(6),[N,1])];
T5.Properties.VariableNames = VarNames;
T6 = [array2table(Fault6Theta), repmat(Label(7),[N,1])];
T6.Properties.VariableNames = VarNames;

% Stack all data
% Use 30 out of 50 datasets for model creation
TrainingData = [T0(1:30,:);T1(1:30,:);T2(1:30,:);T3(1:30,:);T4(1:30,:);T5(1:30,:);T6(1:30,:)];

% Create an ensemble Mdl of 20 decision trees for predicting the 
% labels using the parameter values
rng(3) % for reproducibility
Mdl = TreeBagger(20, TrainingData, 'Condition',...
   'OOBPrediction','on',...
   'OOBPredictorImportance','on')

Mdl = 
  TreeBagger
Ensemble with 20 bagged decision trees:
                    Training X:              [210x3]
                    Training Y:              [210x1]
                        Method:       classification
                 NumPredictors:                    3
         NumPredictorsToSample:                    2
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                   MinLeafSize:                    1
                 InBagFraction:                    1
         SampleWithReplacement:                    1
          ComputeOOBPrediction:                    1
 ComputeOOBPredictorImportance:                    1
                     Proximity:                   []
                    ClassNames:  'AbrasiveWear'   'BrokenBlade'    'Cavitation' 'ClearanceGapWear'       'Healthy' 'ImpellerInletDeposit' 'ImpellerOutletDeposit'

  Properties, Methods

The performance of the TreeBagger model can be computed by studying its misclassification
probability for out-of-bag observations as a function of number of decision trees.

% Compute out of bag error
figure
plot(oobError(Mdl))
xlabel('Number of trees')
ylabel('Misclassification probability')

Finally, compute prediction performance of the model on test samples that were never used for
growing the decision trees.

ValidationData = [T0(31:50,:);T1(31:50,:);T2(31:50,:);T3(31:50,:);T4(31:50,:);T5(31:50,:);T6(31:50,:)];
PredictedClass = predict(Mdl,ValidationData);
E = zeros(1,7);
% Healthy data misclassification
E(1) = sum(~strcmp(PredictedClass(1:20), Label{1}));
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% Clearance gap fault misclassification
E(2) = sum(~strcmp(PredictedClass(21:40), Label{2}));
% Impeller outlet deposit fault misclassification
E(3) = sum(~strcmp(PredictedClass(41:60), Label{3}));
% Impeller inlet deposit fault misclassification
E(4) = sum(~strcmp(PredictedClass(61:80), Label{4}));
% Abrasive wear fault misclassification
E(5) = sum(~strcmp(PredictedClass(81:100), Label{5}));
% Broken blade fault misclassification
E(6) = sum(~strcmp(PredictedClass(101:120), Label{6}));
% Cavitation fault misclassification
E(7) = sum(~strcmp(PredictedClass(121:140), Label{7}));
figure
bar(E/20*100)
xticklabels(Label)
set(gca,'XTickLabelRotation',45)
ylabel('Misclassification (%)')

The plot shows that the abrasive wear and broken blade faults are misclassified for 30% of the
validation samples. A closer look at the predicted labels shows that in the misclassified cases, the
'AbrasiveWear' and 'BrokenBlade' labels get intermixed between each other only. This suggests that
the symptoms for these fault categories are not sufficiently distinguishable for this classifier.

Summary

A well designed fault diagnosis strategy can save operating costs by minimizing service downtime
and component replacement costs. The strategy benefits from a good knowledge about the operating
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machine's dynamics which is used in combination with sensor measurements to detect and isolate
different kinds of faults.

This example discussed a parametric approach for fault detection and isolation based on steady-state
experiments. This approach requires careful modeling of the system dynamics and using the
parameters (or transformations thereof) as features for designing fault diagnosis algorithms. The
parameters were used for training anomaly detectors, performing likelihood ratio tests and for
training of multi-class classifiers.

How to make use of classification techniques in real-life testing of pumps

A summary of the fault diagnosis workflow follows.

1 Run the test pump at its nominal speed. Turn the discharge valve to various settings to control
the flow rate. For each valve position, note down the pump speed, flow rate, pressure
differentials and torque.

2 Estimate parameters for the pump head and pump torque characteristic (steady state) equations.
3 If the uncertainty/noise is low and the parameter estimates are reliable, the estimated

parameters can be directly compared to their nominal values. Their relative magnitudes would
indicate the nature of the fault.

4 In a general noisy situation, use the anomaly detection techniques to first check if there is a fault
present in the system at all. This can be done very quickly by comparing the estimated parameter
values against the mean and covariance values obtained from a historical database of healthy
pumps.

5 If a fault is indicated, use the fault classification techniques (such as likelihood ratio tests or
output of a classifier) to isolate the most probable cause(s). The choice of classification technique
would depend upon sensor data available, their reliability, the severity of the fault and availability
of historical information regarding the fault modes.

For a fault diagnosis approach based on residual analysis, see the “Fault Diagnosis of Centrifugal
Pumps Using Residual Analysis” on page 4-55 example.

References

1 Isermann, Rolf, Fault-Diagnosis Applications. Model-Based Condition Monitoring: Actuators,
Drives, Machinery, Plants, Sensors, and Fault-tolerant System, Edition 1, Springer-Verlag Berlin
Heidelberg, 2011.

Supporting Functions

Linear fit to pump parameters.

function varargout = linearFit(Form, Data)
%linearFit Linear least squares solution for Pump Head and Torque parameters.
%
% If Form==0, accept separate inputs and return separate outputs. For one experiment only.
% If Form==1, accept an ensemble and return compact parameter vectors. For several experiments (ensemble).
if Form==0
   w = Data{1};
   Q = Data{2};
   H = Data{3};
   M = Data{4};
   n = length(Q);
   if isscalar(w), w = w*ones(n,1); end
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   Q = Q(:); H = H(:); M = M(:);
   Predictor = [w.^2, w.*Q, Q.^2];
   Theta1 = Predictor\H;
   hnn =  Theta1(1);
   hnv = -Theta1(2);
   hvv = -Theta1(3);
   Theta2 = Predictor\M;
   k0 =  Theta2(2);
   k1 = -Theta2(3);
   k2 =  Theta2(1);
   varargout = {hnn, hnv, hvv, k0, k1, k2};
else
   H = cellfun(@(x)x.Head,Data,'uni',0);
   Q = cellfun(@(x)x.Discharge,Data,'uni',0);
   M = cellfun(@(x)x.Torque,Data,'uni',0);
   W = cellfun(@(x)x.Speed,Data,'uni',0);
   N = numel(H);

   Theta1 = zeros(3,N);
   Theta2 = zeros(3,N);
   
   for kexp = 1:N
      Predictor = [W{kexp}.^2, W{kexp}.*Q{kexp}, Q{kexp}.^2];
      X1 = Predictor\H{kexp};
      hnn =  X1(1);
      hnv = -X1(2);
      hvv = -X1(3);
      X2 = Predictor\M{kexp};
      k0 =  X2(2);
      k1 = -X2(3);
      k2 =  X2(1);
      
      Theta1(:,kexp) = [hnn; hnv; hvv];
      Theta2(:,kexp) = [k0; k1; k2];
   end
   varargout = {Theta1', Theta2'};
end
end

Membership likelihood test.

function pumpModeLikelihoodTest(HealthyTheta, LargeTheta, SmallTheta)
%pumpModeLikelihoodTest Generate predictions based on PDF values and plot confusion matrix.

m1 = mean(HealthyTheta);
c1 = cov(HealthyTheta);
m2 = mean(LargeTheta);
c2 = cov(LargeTheta);
m3 = mean(SmallTheta);
c3 = cov(SmallTheta);

N = size(HealthyTheta,1);

% True classes
% 1: Healthy: group label is 1.
X1t = ones(N,1);
% 2: Large gap: group label is 2.
X2t = 2*ones(N,1);
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% 3: Small gap: group label is 3.
X3t = 3*ones(N,1);

% Compute predicted classes as those for which the joint PDF has the maximum value.
X1 = zeros(N,3); 
X2 = zeros(N,3); 
X3 = zeros(N,3); 
for ct = 1:N
   % Membership probability density for healthy parameter sample
   HealthySample  = HealthyTheta(ct,:);
   x1 = mvnpdf(HealthySample, m1, c1);
   x2 = mvnpdf(HealthySample, m2, c2);
   x3 = mvnpdf(HealthySample, m3, c3);
   X1(ct,:) = [x1 x2 x3];
   
   % Membership probability density for large gap pump parameter
   LargeSample  = LargeTheta(ct,:);
   x1 = mvnpdf(LargeSample, m1, c1);
   x2 = mvnpdf(LargeSample, m2, c2);
   x3 = mvnpdf(LargeSample, m3, c3);
   X2(ct,:) = [x1 x2 x3];
   
   % Membership probability density for small gap pump parameter
   SmallSample  = SmallTheta(ct,:);
   x1 = mvnpdf(SmallSample, m1, c1);
   x2 = mvnpdf(SmallSample, m2, c2);
   x3 = mvnpdf(SmallSample, m3, c3);
   X3(ct,:) = [x1 x2 x3];
end

[~,PredictedGroup] = max([X1;X2;X3],[],2);
TrueGroup = [X1t; X2t; X3t];
C = confusionmat(TrueGroup,PredictedGroup);
heatmap(C, ...
    'YLabel', 'Actual condition', ...
    'YDisplayLabels', {'Healthy','Large Gap','Small Gap'}, ...
    'XLabel', 'Predicted condition', ...
    'XDisplayLabels', {'Healthy','Large Gap','Small Gap'}, ...
    'ColorbarVisible','off');
end

See Also

More About
• “Decision Models for Fault Detection and Diagnosis” on page 4-2
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Fault Diagnosis of Centrifugal Pumps Using Residual Analysis
This example shows a model parity-equations based approach for detection and diagnosis of different
types of faults that occur in a pumping system. This example extends the techniques presented in the
“Fault Diagnosis of Centrifugal Pumps Using Steady State Experiments” on page 4-30 to the situation
where the pump operation spans multiple operating conditions.

The example follows the centrifugal pump analysis presented in the Fault Diagnosis Applications book
by Rolf Isermann [1]. It uses functionality from System Identification Toolbox™, Statistics and
Machine Learning Toolbox™, Control System Toolbox™ and Simulink™ and does not require
Predictive Maintenance Toolbox™.

Multi-Speed Pump Runs - Diagnosis by Residual Analysis

The steady-state pump head and torque equations do not produce accurate results if the pump is run
at rapidly varying or a wider range of speeds. Friction and other losses could become significant and
the model's parameters exhibit dependence on speed. A widely applicable approach in such cases is
to create a black box model of the behavior. The parameters of such models need not be physically
meaningful. The model is used as a device for simulation of known behaviors. The model's outputs are
subtracted from the corresponding measured signals to compute residuals. The properties of
residuals, such as their mean, variance and power are used to distinguish between normal and faulty
operations.

Using the static pump head equation, and the dynamic pump-pipe equations, the 4 residuals as shown
in the figure can be computed.

The model has of the following components:

• Static pump model: Δp(t) = θ1ω2(t) + θ2ω(t)
• Dynamic pipe model: Q(t) = θ3 + θ4 Δp(t) + θ5Q(t − 1)
• Dynamic pump-pipe model: Q(t) = θ3 + θ4 Δp(t) + θ5Q(t − 1)
• Dynamic inverse pump model: Mmotor(t) = θ6 + θ7ω(t) + θ8ω(t − 1) + θ9ω2(t) + θ10Mmotor(t − 1)

The model parameters θ1, . . . , θ10 show dependence on pump speed. In this example, a piecewise
linear approximation for the parameters is computed. Divide the operating region into 3 regimes:

1 ω ≤ 900 RPM
2 900 < ω ≤ 1500 RPM
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3 ω > 1500 RPM

A healthy pump was run over a reference speed range of 0 - 3000 RPM in closed loop with a closed-
loop controller. The reference input is a modified PRBS signal. The measurements for motor torque,
pump torque, speed and pressure were collected at 10 Hz sampling frequency. Load the measured
signals and plot the reference and actual pump speeds (these are large datasets, ~20MB, that are
downloaded from the MathWorks support files site).

url = 'https://www.mathworks.com/supportfiles/predmaint/fault-diagnosis-of-centrifugal-pumps-using-residual-analysis/DynamicOperationData.mat';
websave('DynamicOperationData.mat',url);
load DynamicOperationData
figure
plot(t, RefSpeed, t, w)
xlabel('Time (s)')
ylabel('Pump Speed (RPM)')
legend('Reference','Actual')

Define operating regimes based on pump speed ranges.

I1 = w<=900;            % first operating regime
I2 = w>900 & w<=1500;   % second operating regime
I3 = w>1500;            % third operating regime

Model Identification

A. Static Pump Model Identification
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Estimate the parameters θ1 and θ2 in the static pump equation using the measured values of pump
speed ω t and pressure differential Δp t  as input-output data. See the helper function
staticPumpEst that performs this estimation.

th1 = zeros(3,1);  
th2 = zeros(3,1); 
dpest = nan(size(dp));  % estimated pressure difference
[th1(1), th2(1), dpest(I1)] = staticPumpEst(w, dp, I1);  % Theta1, Theta2 estimates for regime 1
[th1(2), th2(2), dpest(I2)] = staticPumpEst(w, dp, I2);  % Theta1, Theta2 estimates for regime 2
[th1(3), th2(3), dpest(I3)] = staticPumpEst(w, dp, I3);  % Theta1, Theta2 estimates for regime 3
plot(t, dp, t, dpest) % compare measured and predicted pressure differential
xlabel('Time (s)')
ylabel('\Delta P')
legend('Measured','Estimated','Location','best')
title('Static Pump Model Validation')

B. Dynamic Pipe Model Identification

Estimate the parameters θ3, θ4 and θ5 in the pipe discharge flow equation
Q(t) = θ3 + θ4 Δp(t) + θ5Q(t − 1), using the measured values of flow rate Q t and pressure differential
Δp t  as input-output data. See the helper function dynamicPipeEst that performs this estimation.

th3 = zeros(3,1);  
th4 = zeros(3,1); 
th5 = zeros(3,1);
[th3(1), th4(1), th5(1)] = dynamicPipeEst(dp, Q, I1); % Theta3, Theta4, Theta5 estimates for regime 1
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[th3(2), th4(2), th5(2)] = dynamicPipeEst(dp, Q, I2); % Theta3, Theta4, Theta5 estimates for regime 2
[th3(3), th4(3), th5(3)] = dynamicPipeEst(dp, Q, I3); % Theta3, Theta4, Theta5 estimates for regime 3

Unlike the static pump model case, the dynamic pipe model shows dynamic dependence on flow rate
values. To simulate the model under varying speed regimes, a piecewise-linear model is created in
Simulink using the "LPV System" block of Control System Toolbox. See the Simulink model
LPV_pump_pipe and the helper function simulatePumpPipeModel that performs the simulation.

% Check Control System Toolbox availability
ControlsToolboxAvailable = ~isempty(ver('control')) && license('test', 'Control_Toolbox');
if ControlsToolboxAvailable
    % Simulate the dynamic pipe model. Use measured value of pressure as input
    Ts = t(2)-t(1);
    Switch = ones(size(w));
    Switch(I2) = 2;
    Switch(I3) = 3;
    UseEstimatedP = 0;
    Qest_pipe = simulatePumpPipeModel(Ts,th3,th4,th5);
    plot(t,Q,t,Qest_pipe) % compare measured and predicted flow rates
else
    % Load pre-saved simulation results from the piecewise linear Simulink model
    load DynamicOperationData Qest_pipe
    Ts = t(2)-t(1);
    plot(t,Q,t,Qest_pipe)
end
xlabel('Time (s)')
ylabel('Flow rate (Q), m^3/s')
legend('Measured','Estimated','Location','best')
title('Dynamic Pipe Model Validation')
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C. Dynamic Pump Pipe Model Identification

The Dynamic pump-pipe model uses the same parameters identified above (θ3, θ4, θ5) except that the
model simulation requires the use of estimated pressure difference rather than the measured one.
Hence no new identification is required. Check that the estimated values of θ3, θ4, θ5 give a good
reproduction of the pump-pipe dynamics.

if ControlsToolboxAvailable
    UseEstimatedP = 1;
    Qest_pump_pipe = simulatePumpPipeModel(Ts,th3,th4,th5);
    plot(t,Q,t,Qest_pump_pipe) % compare measured and predicted flow rates
else
    load DynamicOperationData Qest_pump_pipe 
    plot(t,Q,t,Qest_pump_pipe)
end

xlabel('Time (s)')
ylabel('Flow rate Q (m^3/s)')
legend('Measured','Estimated','location','best')
title('Dynamic Pump-Pipe Model Validation')
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The fit is virtually identical to the one obtained using measured pressure values.

D. Dynamic Inverse Pump Model Identification

The parameters θ6, . . . , θ10 can be identified in a similar manner, by regressing the measured torque
values on the previous torque and speed measurements. However, a complete multi-speed simulation
of the resulting piecewise linear model does not provide a good fit to the data. Hence a different
black box modeling approach is tried which involves identifying a Nonlinear ARX model with rational
regressors to fit the data.

% Use first 300 samples out of 550 for identification
N = 350;
sys3 = identifyNonlinearARXModel(Mmot,w,Q,Ts,N)

sys3 =
Nonlinear ARX model with 1 output and 2 inputs
 Inputs: u1, u2
 Outputs: y1
 Standard regressors corresponding to the orders:
   na = [2]
   nb = [2 1]
   nk = [0 1]
 Custom regressors:
   u1(t-2)^2
   u1(t)*u2(t-2)
   u2(t)^2
 Nonlinear regressors:
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  none
 Model output is linear in regressors.
Sample time: 0.1 seconds

Status:                                          
Estimated using NLARX on time domain data.       
Fit to estimation data: 50.55% (simulation focus)
FPE: 1759, MSE: 3214

Mmot_est = sim(sys3,[w Q]);
plot(t,Mmot,t,Mmot_est) % compare measured and predicted motor torque
xlabel('Time (s)')
ylabel('Motor Torque (Nm)')
legend('Measured','Estimated','location','best')
title('Inverse pump model validation')

Residue Generation

Define residue of a model as the difference between a measured signal and the corresponding model-
produced output. Compute the four residuals corresponding to the four model components.

r1 = dp - dpest;
r2 = Q - Qest_pipe;
r3 = Q - Qest_pump_pipe;

For computing the inverse pump model residue, apply a smoothing operation on the model output
using a moving average filter since the original residues show large variance.
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r4 = Mmot - movmean(Mmot_est,[1 5]);

A view of training residues:

figure
subplot(221)
plot(t,r1)
ylabel('Static pump - r1')
subplot(222)
plot(t,r2)
ylabel('Dynamic pipe - r2')
subplot(223)
plot(t,r3)
ylabel('Dynamic pump-pipe - r3')
xlabel('Time (s)')
subplot(224)
plot(t,r4)
ylabel('Dynamic inverse pump - r4')
xlabel('Time (s)')

Residue Feature Extraction

Residues are signals from which suitable features are extracted for fault isolation. Since no
parametric information is available, consider features that are derived purely from signal properties
such as maximum amplitude or variance of the signal.

Consider a set of 20 experiments on the pump-pipe system using PRBS input realizations. The
experiment set is repeated for each of the following modes:
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1 Healthy pump
2 Fault 1: Wear at clearance gap
3 Fault 2: Small deposits at impeller outlet
4 Fault 3: Deposits at impeller inlet
5 Fault 4: Abrasive wear at impeller outlet
6 Fault 5: Broken blade
7 Fault 6: Cavitation
8 Fault 7: Speed sensor bias
9 Fault 8: Flowmeter bias
10 Fault 9: Pressure sensor bias

Load the experimental data

url = 'https://www.mathworks.com/supportfiles/predmaint/fault-diagnosis-of-centrifugal-pumps-using-residual-analysis/MultiSpeedOperationData.mat';
websave('MultiSpeedOperationData.mat',url);
load MultiSpeedOperationData
% Generate operation mode labels
Labels = {'Healthy','ClearanceGapWear','ImpellerOutletDeposit',...
    'ImpellerInletDeposit','AbrasiveWear','BrokenBlade','Cavitation','SpeedSensorBias',...
    'FlowmeterBias','PressureSensorBias'};

Compute residues for each ensemble and each mode of operation. This takes several minutes. Hence
the residual data is saved in a data file. Run the helperComputeEnsembleResidues to generate
the residuals, as in:

% HealthyR = helperComputeEnsembleResidues(HealthyEnsemble,Ts,sys3,th1,th2,th3,th4,th5); % Healthy data residuals

% Load pre-saved data from "helperComputeEnsembleResidues" run
url = 'https://www.mathworks.com/supportfiles/predmaint/fault-diagnosis-of-centrifugal-pumps-using-residual-analysis/Residuals.mat';
websave('Residuals.mat',url);
load Residuals

The feature of the residues that would have the most mode-discrimination power is not known a-
priori. So generate several candidate features: mean, maximum amplitude, variance, kurtosis and 1-
norm for each residual. All the features are scaled using the range of values in the healthy ensemble.

CandidateFeatures = {@mean, @(x)max(abs(x)), @kurtosis, @var, @(x)sum(abs(x))};
FeatureNames = {'Mean','Max','Kurtosis','Variance','OneNorm'};
% generate feature table from gathered residuals of each fault mode
[HealthyFeature, MinMax] = helperGenerateFeatureTable(HealthyR, CandidateFeatures, FeatureNames);
Fault1Feature  = helperGenerateFeatureTable(Fault1R,  CandidateFeatures, FeatureNames, MinMax);
Fault2Feature  = helperGenerateFeatureTable(Fault2R,  CandidateFeatures, FeatureNames, MinMax);
Fault3Feature  = helperGenerateFeatureTable(Fault3R,  CandidateFeatures, FeatureNames, MinMax);
Fault4Feature  = helperGenerateFeatureTable(Fault4R,  CandidateFeatures, FeatureNames, MinMax);
Fault5Feature  = helperGenerateFeatureTable(Fault5R,  CandidateFeatures, FeatureNames, MinMax);
Fault6Feature  = helperGenerateFeatureTable(Fault6R,  CandidateFeatures, FeatureNames, MinMax);
Fault7Feature  = helperGenerateFeatureTable(Fault7R,  CandidateFeatures, FeatureNames, MinMax);
Fault8Feature  = helperGenerateFeatureTable(Fault8R,  CandidateFeatures, FeatureNames, MinMax);
Fault9Feature  = helperGenerateFeatureTable(Fault9R,  CandidateFeatures, FeatureNames, MinMax);

There are 20 features in each feature table (5 features for each residue signal). Each table contains
50 observations (rows), one from each experiment.

N = 50; % number of experiments in each mode
FeatureTable = [...
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   [HealthyFeature(1:N,:), repmat(Labels(1),[N,1])];...
   [Fault1Feature(1:N,:),  repmat(Labels(2),[N,1])];...
   [Fault2Feature(1:N,:),  repmat(Labels(3),[N,1])];...
   [Fault3Feature(1:N,:),  repmat(Labels(4),[N,1])];...
   [Fault4Feature(1:N,:),  repmat(Labels(5),[N,1])];...
   [Fault5Feature(1:N,:),  repmat(Labels(6),[N,1])];...
   [Fault6Feature(1:N,:),  repmat(Labels(7),[N,1])];...
   [Fault7Feature(1:N,:),  repmat(Labels(8),[N,1])];...
   [Fault8Feature(1:N,:),  repmat(Labels(9),[N,1])];...
   [Fault9Feature(1:N,:),  repmat(Labels(10),[N,1])]];
FeatureTable.Properties.VariableNames{end} = 'Condition';

% Preview some samples of training data
disp(FeatureTable([2 13 37 49 61 62 73 85 102 120],:))

     Mean1       Mean2      Mean3      Mean4      Max1        Max2        Max3        Max4       Kurtosis1    Kurtosis2    Kurtosis3    Kurtosis4     Variance1    Variance2    Variance3    Variance4    OneNorm1    OneNorm2    OneNorm3    OneNorm4            Condition        
    ________    _______    _______    _______    _______    ________    ________    _________    _________    _________    _________    __________    _________    _________    _________    _________    ________    ________    ________    ________    _________________________

     0.32049     0.6358     0.6358    0.74287    0.39187     0.53219     0.53219     0.041795      0.18957    0.089492     0.089489              0     0.45647       0.6263       0.6263      0.15642      0.56001    0.63541     0.63541      0.24258    {'Healthy'              }
     0.21975    0.19422    0.19422    0.83704          0     0.12761     0.12761      0.27644      0.18243     0.19644      0.19643        0.20856    0.033063      0.16772      0.16773     0.025119     0.057182    0.19344     0.19344     0.063167    {'Healthy'              }
      0.1847    0.25136    0.25136    0.87975    0.32545     0.13929      0.1393     0.084162      0.72346    0.091488     0.091485       0.052552    0.063757      0.18371      0.18371     0.023845      0.10671    0.25065     0.25065      0.04848    {'Healthy'              }
           1          1          1          0    0.78284     0.94535     0.94535       0.9287      0.41371     0.45927      0.45926        0.75934     0.92332            1            1      0.80689      0.99783          1           1       0.9574    {'Healthy'              }
     -2.6545    0.90555    0.90555    0.86324     1.3037      0.7492      0.7492      0.97823    -0.055035     0.57019      0.57018         1.4412      1.4411      0.73128      0.73128      0.80573       3.2084    0.90542     0.90542      0.49257    {'ClearanceGapWear'     }
    -0.89435    0.43384    0.43385     1.0744    0.82197     0.30254     0.30254    -0.022325      0.21411    0.098504       0.0985      -0.010587     0.55959      0.29554      0.29554     0.066693       1.0432    0.43326     0.43326      0.13785    {'ClearanceGapWear'     }
     -1.2149    0.53579    0.53579     1.0899    0.87439     0.47339     0.47339      0.29547     0.058946    0.048138     0.048137        0.17864     0.79648      0.48658      0.48658      0.25686       1.4066     0.5353      0.5353      0.26663    {'ClearanceGapWear'     }
     -1.0949    0.44616    0.44616      1.143    0.56693     0.19719     0.19719    -0.012055     -0.10819     0.32603      0.32603     -0.0033592     0.43341      0.12857      0.12857     0.038392       1.2238    0.44574     0.44574     0.093243    {'ClearanceGapWear'     }
     -0.1844    0.16651    0.16651    0.87747    0.25597    0.080265    0.080265      0.49715       0.5019     0.29939      0.29938         0.5338    0.072397     0.058024     0.058025       0.1453      0.20263    0.16566     0.16566      0.14216    {'ImpellerOutletDeposit'}
     -3.0312     0.9786     0.9786    0.75241      1.473     0.97839     0.97839       1.0343    0.0050647      0.4917       0.4917        0.89759      1.7529       0.9568       0.9568       0.8869       3.6536    0.97859     0.97859      0.62706    {'ImpellerOutletDeposit'}

Classifier Design

A. Visualizing mode separability using scatter plot

Begin the analysis by visual inspection of the features. For this, consider Fault 1: Wear at clearance
gap. To view which features are most suitable to detect this fault, generate a scatter plot of features
with labels 'Healthy' and 'ClearanceGapWear'.

T = FeatureTable(:,1:20);
P = T.Variables;
R = FeatureTable.Condition;
I = strcmp(R,'Healthy') | strcmp(R,'ClearanceGapWear');
f = figure;
gplotmatrix(P(I,:),[],R(I))
f.Position(3:4) = f.Position(3:4)*1.5;
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Although not clearly visible, features in columns 1 and 17 provide the most separation. Analyze these
features more closely.

f = figure;
Names = FeatureTable.Properties.VariableNames;
J = [1 17];
fprintf('Selected features for clearance gap fault: %s\n',strjoin(Names(J),', '))

Selected features for clearance gap fault: Mean1, OneNorm1

gplotmatrix(P(I,[1 17]),[],R(I))
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The plot now clearly shows that features Mean1 and OneNorm1 can be used to separate healthy
mode from clearance gap fault mode. A similar analysis can be performed for each fault mode. In all
cases, it is possible to find a set of features that distinguish the fault modes. Hence detection of a
faulty behavior is always possible. However, fault isolation is more difficult since the same features
are affected by multiple fault types. For example, the features Mean1 (Mean of r1) and OneNorm1 (1-
norm of r1) show a change for many fault types. Still some faults such as sensor biases are more
easily isolable where the fault is separable in many features.

For the three sensor bias faults, pick features from a manual inspection of the scatter plot.

figure;
I = strcmp(R,'Healthy') | strcmp(R,'PressureSensorBias') | strcmp(R,'SpeedSensorBias') | strcmp(R,'FlowmeterBias');
J = [1 4 6 16 20]; % selected feature indices
fprintf('Selected features for sensors'' bias: %s\n',strjoin(Names(J),', '))

Selected features for sensors' bias: Mean1, Mean4, Max2, Variance4, OneNorm4

gplotmatrix(P(I,J),[],R(I))
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The scatter plot of selected features shows that the 4 modes can be distinguished on one or more
pairs of features. Train a 20 member Tree Bagger classifier for the reduced set of faults (sensor
biases only) using a reduced set of features.

rng default % for reproducibility
Mdl = TreeBagger(20, FeatureTable(I,[J 21]), 'Condition',...
   'OOBPrediction','on',...
   'OOBPredictorImportance','on');
figure
plot(oobError(Mdl))
xlabel('Number of trees')
ylabel('Misclassification probability')
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The misclassification error is less than 3%. Thus it is possible to pick and work with a smaller set of
features for classifying a certain subset of faults.

B. Multi-class Classification using Classification Learner App

The previous section focused on manual inspection of scatter plots to reduce the feature set for
particular fault types. This approach can get tedious and may not cover all fault types. Can you
design a classifier that can handle all fault modes in a more automated fashion? There are many
classifiers available in Statistics and Machine Learning Toolbox. A quick way to try many of them and
compare their performances is to use the Classification Learner App.
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1 Launch the Classification Learner App and select FeatureTable from workspace as working data
for a new session. Set aside 20% of data (10 samples of each mode) for holdout validation.

2 Select All under Model Type section of the main tab. Then press the Train button.

3 In a short time, about 20 classifiers are trained. Their accuracies are displayed next to their
names under the history panel. A linear SVM classifier performs the best, producing 86%
accuracy on the hold out samples. This classifier has some difficulty in identifying
"ClearanceGapWear" which it classifies as "ImpellerOutletDeposit" 40% of the time.

4 To get a graphical view of the performance, open a Confusion Matrix plot from the PLOTS section
of the main tab. The plot shows the performance of the selected classifier (the Linear SVM
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classifier here).

Export the best performing classifier to the workspace and use it for prediction on new
measurements.

Summary

A well designed fault diagnosis strategy can save operating costs by minimizing service downtime
and component replacement costs. The strategy benefits from a good knowledge about the operating
machine's dynamics which is used in combination with sensor measurements to detect and isolate
different kinds of faults. This example described a residual based approach for fault diagnosis of
centrifugal pumps. This approach is a good alternative to parameter estimation and tracking based
approaches when the modeling task is complex and model parameters show dependence on operating
conditions.

A residual based fault diagnosis approach involves the following steps:

1 Model the dynamics between the measurable inputs and outputs of the system using physical
considerations or black box system identification techniques.

2 Compute residues as difference between measured and model produced signals. The residues
may need to be further filtered to improve fault isolability.

3 Extract features such as peak amplitude, power, kurtosis etc from each residual signal.
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4 Use features for fault detection and classification using anomaly detection and classification
techniques.

5 Not all residues and derived features are sensitive to every fault. A view of feature histograms
and scatter plots can reveal which features are suitable for detecting a certain fault type. This
process of picking features and assessing their performance for fault isolation can be an iterative
procedure.

References
1 Isermann, Rolf, Fault-Diagnosis Applications. Model-Based Condition Monitoring: Actuators,

Drives, Machinery, Plants, Sensors, and Fault-tolerant System, Edition 1, Springer-Verlag Berlin
Heidelberg, 2011.

Supporting Functions

Static pump equation parameter estimation

function [x1, x2, dpest] = staticPumpEst(w, dp, I)
%staticPumpEst Static pump parameter estimation in a varying speed setting
% I: sample indices for the selected operating region.

w1 = [0; w(I)];
dp1 = [0; dp(I)];
R1 = [w1.^2 w1];
x = pinv(R1)*dp1;
x1 = x(1);  
x2 = x(2);  

dpest = R1(2:end,:)*x;
end

Dynamic pipe parameter estimation

function [x3, x4, x5, Qest] = dynamicPipeEst(dp, Q, I)
%dynamicPipeEst Dynamic pipe parameter estimation in a varying speed setting
% I: sample indices for the selected operating region.

Q = Q(I);
dp = dp(I);
R1 = [0; Q(1:end-1)];
R2 = dp; R2(R2<0) = 0; R2 = sqrt(R2);
R = [ones(size(R2)), R2, R1];

% Remove out-of-regime samples
ii = find(I);
j = find(diff(ii)~=1);
R = R(2:end,:); R(j,:) = [];
y = Q(2:end); y(j) = [];
x = R\y;

x3 = x(1);
x4 = x(2);
x5 = x(3);

Qest = R*x;
end

Dynamic, multi-operating mode simulation of pump-pipe model using LPV System block.
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function Qest = simulatePumpPipeModel(Ts,th3,th4,th5)
%simulatePumpPipeModel Piecewise linear modeling of dynamic pipe system.
% Ts: sample time
% w: Pump rotational speed
% th1, th2, th3 are estimated model parameters for the 3 regimes.
% This function requires Control System Toolbox.

ss1 = ss(th5(1),th4(1),th5(1),th4(1),Ts);
ss2 = ss(th5(2),th4(2),th5(2),th4(2),Ts);
ss3 = ss(th5(3),th4(3),th5(3),th4(3),Ts);
offset = permute([th3(1),th3(2),th3(3)]',[3 2 1]);
OP = struct('Region',[1 2 3]');
sys = cat(3,ss1,ss2,ss3);
sys.SamplingGrid = OP;

assignin('base','sys',sys)
assignin('base','offset',offset)
mdl = 'LPV_pump_pipe';
sim(mdl);
Qest = logsout.get('Qest');
Qest = Qest.Values;
Qest = Qest.Data;
end

Identify a dynamic model for inverse pump dynamics.

function syse = identifyNonlinearARXModel(Mmot,w,Q,Ts,N)
%identifyNonlinearARXModel Identify a nonlinear ARX model for 2-input (w, Q), 1-output (Mmot) data.
% Inputs:
%  w: rotational speed
%  Q: Flow rate
%  Mmot: motor torque
%  N: number of data samples to use
% Outputs:
%  syse: Identified model
%
% This function uses NLARX estimator from System Identification Toolbox.

sys = idnlarx([2 2 1 0 1],'','CustomRegressors',{'u1(t-2)^2','u1(t)*u2(t-2)','u2(t)^2'});
data = iddata(Mmot,[w Q],Ts);
opt = nlarxOptions;
opt.Focus = 'simulation';
opt.SearchOptions.MaxIterations = 500;
syse = nlarx(data(1:N),sys,opt);
end

See Also

More About
• “Decision Models for Fault Detection and Diagnosis” on page 4-2
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Fault Detection Using an Extended Kalman Filter
This example shows how to use an extended Kalman filter for fault detection. The example uses an
extended Kalman filter for online estimation of the friction of a simple DC motor. Significant changes
in the estimated friction are detected and indicate a fault. This example uses functionality from
System Identification Toolbox™, and does not require Predictive Maintenance Toolbox™.

Motor Model

The motor is modelled as an inertia J with damping coefficient c, driven by a torque u. The motor
angular velocity w and acceleration ẇ, are the measured outputs.

ẇ = (u− cw)/ J

To estimate the damping coefficient c using an extended Kalman filter, introduce an auxiliary state for
the damping coefficient and set its derivative to zero.

ċ = 0

Thus, the model state, x = [w;c], and measurement, y, equations are:

ẇ
ċ

=
u− cw / J

0

y =
w

u− cw / J

The continuous-time equations are transformed to discrete time using the approximation

ẋ =
xn + 1− xn

Ts
, where Ts is the discrete sampling period. This gives the discrete-time model equations

which are implemented in the pdmMotorModelStateFcn.m and
pdmMotorModelMeasurementFcn.m functions.

wn + 1
cn + 1

=
wn + un− cnwn Ts/ J

cn

yn =
wn

un− cnwn / J

Specify motor parameters.

J  = 10;    % Inertia 
Ts = 0.01;  % Sample time

Specify initial states.

x0 = [...
    0; ...  % Angular velocity 
    1];     % Friction

type pdmMotorModelStateFcn

function x1 = pdmMotorModelStateFcn(x0,varargin)
%PDMMOTORMODELSTATEFCN
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%
% State update equations for a motor with friction as a state
%
%  x1 = pdmMotorModelStateFcn(x0,u,J,Ts)
%
%  Inputs:
%    x0 - initial state with elements [angular velocity; friction] 
%    u  - motor torque input
%    J  - motor inertia
%    Ts - sampling time
%
%  Outputs:
%    x1 - updated states
%

%  Copyright 2016-2017 The MathWorks, Inc.

% Extract data from inputs
u  = varargin{1};   % Input
J  = varargin{2};   % System innertia
Ts = varargin{3};   % Sample time

% State update equation
x1 = [...
    x0(1)+Ts/J*(u-x0(1)*x0(2)); ...
    x0(2)];
end

type pdmMotorModelMeasurementFcn

function y = pdmMotorModelMeasurementFcn(x,varargin)
%PDMMOTORMODELMEASUREMENTFCN
%
% Measurement equations for a motor with friction as a state
%
%  y = pdmMotorModelMeasurementFcn(x0,u,J,Ts)
%
%  Inputs:
%    x  - motor state with elements [angular velocity; friction] 
%    u  - motor torque input
%    J  - motor inertia
%    Ts - sampling time
%
%  Outputs:
%    y - motor measurements with elements [angular velocity; angular acceleration]
%

%  Copyright 2016-2017 The MathWorks, Inc.

% Extract data from inputs
u  = varargin{1};   % Input
J  = varargin{2};   % System innertia

% Output equation
y = [...
    x(1); ...
    (u-x(1)*x(2))/J];
end
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The motor experiences state (process) noise disturbances, q, and measurement noise disturbances, r.
The noise terms are additive.

wn + 1
cn + 1

=
wn + un− cnwn Ts/ J

cn
+ q

yn =
wn

un− cnwn / J
+ r

The process and measurement noise have zero mean, E[q]=E[r]=0, and covariances Q = E[qq']
and R = E[rr']. The friction state has a high process noise disturbance. This reflects the fact that
we expect the friction to vary during normal operation of the motor and want the filter to track this
variation. The acceleration and velocity state noise is low but the velocity and acceleration
measurements are relatively noisy.

Specify the process noise covariance.

Q = [...
    1e-6 0; ...   % Angular velocity
    0 1e-2];      % Friction

Specify the measurement noise covariance.

R = [...
    1e-4 0; ...  % Velocity measurement
    0 1e-4];     % Acceleration measurement

Creating an Extended Kalman Filter

Create an extended Kalman Filter to estimate the states of the model. We are particularly interested
in the damping state because dramatic changes in this state value indicate a fault event.

Create an extendedKalmanFilter object, and specify the Jacobians of the state transition and
measurement functions.

ekf = extendedKalmanFilter(...
    @pdmMotorModelStateFcn, ...
    @pdmMotorModelMeasurementFcn, ...
    x0,...
    'StateCovariance',            [1 0; 0 1000], ...[1 0 0; 0 1 0; 0 0 100], ...
    'ProcessNoise',               Q, ...
    'MeasurementNoise',           R, ...
    'StateTransitionJacobianFcn', @pdmMotorModelStateJacobianFcn, ...
    'MeasurementJacobianFcn',     @pdmMotorModelMeasJacobianFcn);

The extended Kalman filter has as input arguments the state transition and measurement functions
defined previously. The initial state value x0, initial state covariance, and process and measurement
noise covariances are also inputs to the extended Kalman filter. In this example, the exact Jacobian
functions can be derived from the state transition function f, and measurement function h:

∂
∂x f =

1 − Tscn/ J −Tswn/ J
0 1

∂
∂x h =

1 0
−cn/ J −wn/ J
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The state Jacobian is defined in the pdmMotorModelStateJacobianFcn.m function and the
measurement Jacobian is defined in the pdmMotorModelMeasJacobianFcn.m function.

type pdmMotorModelStateJacobianFcn

function Jac = pdmMotorModelStateJacobianFcn(x,varargin)
%PDMMOTORMODELSTATEJACOBIANFCN
%
% Jacobian of motor model state equations. See pdmMotorModelStateFcn for
% the model equations.
%
%  Jac = pdmMotorModelJacobianFcn(x,u,J,Ts)
%
%  Inputs:
%    x  - state with elements [angular velocity; friction] 
%    u  - motor torque input
%    J  - motor inertia
%    Ts - sampling time
%
%  Outputs:
%    Jac - state Jacobian computed at x
%

%  Copyright 2016-2017 The MathWorks, Inc.

% Model properties
J  = varargin{2};
Ts = varargin{3};

% Jacobian
Jac = [...
    1-Ts/J*x(2) -Ts/J*x(1); ...
    0 1];
end

type pdmMotorModelMeasJacobianFcn

function J = pdmMotorModelMeasJacobianFcn(x,varargin)
%PDMMOTORMODELMEASJACOBIANFCN
%
% Jacobian of motor model measurement equations. See
% pdmMotorModelMeasurementFcn for the model equations.
%
%  Jac = pdmMotorModelMeasJacobianFcn(x,u,J,Ts)
%
%  Inputs:
%    x  - state with elements [angular velocity; friction] 
%    u  - motor torque input
%    J  - motor inertia
%    Ts - sampling time
%
%  Outputs:
%    Jac - measurement Jacobian computed at x
%

%  Copyright 2016-2017 The MathWorks, Inc.

% System parameters
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J  = varargin{2};   % System innertia

% Jacobian
J = [ ...
    1 0;
    -x(2)/J -x(1)/J];
end

Simulation

To simulate the plant, create a loop and introduce a fault in the motor (a dramatic change in the
motor fiction). Within the simulation loop, use the extended Kalman filter to estimate the motor states
and to specifically track the friction state to detect when there is a statistically significant change in
friction.

The motor is simulated with a pulse train that repeatedly accelerates and decelerates the motor. This
type of motor operation is typical for a picker robot in a production line.

t  = 0:Ts:20;                  % Time, 20s with Ts sampling period
u  = double(mod(t,1)<0.5)-0.5; % Pulse train, period 1, 50% duty cycle
nt = numel(t);                 % Number of time points
nx = size(x0,1);               % Number of states
ySig = zeros([2, nt]);         % Measured motor outputs
xSigTrue = zeros([nx, nt]);    % Unmeasured motor states
xSigEst = zeros([nx, nt]);     % Estimated motor states
xstd = zeros([nx nx nt]);      % Standard deviation of the estimated states 
ySigEst = zeros([2, nt]);      % Estimated model outputs
fMean = zeros(1,nt);           % Mean estimated friction
fSTD = zeros(1,nt);            % Standard deviation of estimated friction 
fKur = zeros(2,nt);            % Kurtosis of estimated friction
fChanged = false(1,nt);        % Flag indicating friction change detection

When simulating the motor, add process and measurement noise similar to the Q and R noise
covariance values used when constructing the extended Kalman filter. For the friction, use a much
smaller noise value because the friction is mostly constant except when the fault occurs. Artificially
induce the fault during the simulation.

rng('default');
Qv = chol(Q);   % Standard deviation for process noise
Qv(end) = 1e-2; % Smaller friction noise
Rv = chol(R);   % Standard deviation for measurement noise

Simulate the model using the state update equation, and add process noise to the model states. Ten
seconds into the simulation, force a change in the motor friction. Use the model measurement
function to simulate the motor sensors, and add measurement noise to the model outputs.

for ct = 1:numel(t)
    
   % Model output update   
   y = pdmMotorModelMeasurementFcn(x0,u(ct),J,Ts);
   y = y+Rv*randn(2,1);   % Add measurement noise
   ySig(:,ct) = y;
   
   % Model state update 
   xSigTrue(:,ct) = x0;
   x1 = pdmMotorModelStateFcn(x0,u(ct),J,Ts);
   % Induce change in friction
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   if t(ct) == 10
       x1(2) = 10;  % Step change
   end
   x1n = x1+Qv*randn(nx,1);  % Add process noise
   x1n(2) = max(x1n(2),0.1); % Lower limit on friction
   x0 = x1n; % Store state for next simulation iteration

Significant friction change at 10.450000

To estimate the motor states from the motor measurements, use the predict and correct
commands of the extended Kalman Filter.

   % State estimation using the Extended Kalman Filter
   x_corr = correct(ekf,y,u(ct),J,Ts); % Correct the state estimate based on current measurement.
   xSigEst(:,ct) = x_corr;
   xstd(:,:,ct) = chol(ekf.StateCovariance);
   predict(ekf,u(ct),J,Ts);            % Predict next state given the current state and input.

To detect changes in friction, compute the estimated friction mean and standard deviation using a 4
second moving window. After an initial 7-second period, lock the computed mean and standard
deviation. This initially computed mean is the expected no-fault mean value for the friction. After 7
seconds, if the estimated friction is greater than 3 standard deviations away from the expected no-
fault mean value, it signifies a significant change in the friction. To reduce the effect of noise and
variability in the estimated friction, use the mean of the estimated friction when comparing to the 3-
standard-deviations bound.

   if t(ct) < 7 
       % Compute mean and standard deviation of estimated fiction.
       idx = max(1,ct-400):max(1,ct-1); % Ts = 0.01 seconds
       fMean(ct) = mean( xSigEst(2, idx) );
       fSTD(ct)  = std( xSigEst(2, idx) );
   else
       % Store the computed mean and standard deviation without
       % recomputing.
       fMean(ct) = fMean(ct-1);
       fSTD(ct)  = fSTD(ct-1);
       % Use the expected friction mean and standard deviation to detect
       % friction changes.
       estFriction = mean(xSigEst(2,max(1,ct-10):ct));
       fChanged(ct) = (estFriction > fMean(ct)+3*fSTD(ct)) || (estFriction < fMean(ct)-3*fSTD(ct));
   end
   if fChanged(ct) && ~fChanged(ct-1) 
       % Detect a rising edge in the friction change signal |fChanged|.
       fprintf('Significant friction change at %f\n',t(ct));
   end

Use the estimated state to compute the estimated output. Compute the error between the measured
and estimated outputs, and calculate the error statistics. The error statistics can be used for
detecting the friction change. This is discussed in more detail later.

   ySigEst(:,ct) = pdmMotorModelMeasurementFcn(x_corr,u(ct),J,Ts);   
   idx = max(1,ct-400):ct;
   fKur(:,ct) = [...
       kurtosis(ySigEst(1,idx)-ySig(1,idx)); ...
       kurtosis(ySigEst(2,idx)-ySig(2,idx))];
end
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Extended Kalman Filter Performance

Note that a friction change was detected at 10.45 seconds. We now describe how this fault-detection
rule was derived. First examine the simulation results and filter performance.

figure, 
subplot(211), plot(t,ySig(1,:),t,ySig(2,:));
title('Motor Outputs')
legend('Measured Angular Velocity','Measured Angular Acceleration', 'Location','SouthWest')
subplot(212), plot(t,u);
title('Motor Input - Torque')

The model input-output responses indicate that it is difficult to detect the friction change directly
from the measured signals. The extended Kalman filter enables us to estimate the states, in particular
the friction state. Compare the true model states and estimated states. The estimated states are
shown with confidence intervals corresponding to 3 standard deviations.

figure, 
subplot(211),plot(t,xSigTrue(1,:), t,xSigEst(1,:), ...
    [t nan t],[xSigEst(1,:)+3*squeeze(xstd(1,1,:))', nan, xSigEst(1,:)-3*squeeze(xstd(1,1,:))'])
axis([0 20 -0.06 0.06]), 
legend('True value','Estimated value','Confidence interval')
title('Motor State - Velocity')
subplot(212),plot(t,xSigTrue(2,:), t,xSigEst(2,:),  ...
    [t nan t],[xSigEst(2,:)+3*squeeze(xstd(2,2,:))' nan xSigEst(2,:)-3*squeeze(xstd(2,2,:))'])
axis([0 20 -10 15])
title('Motor State - Friction');
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Note that the filter estimate tracks the true values, and that the confidence intervals remain bounded.
Examining the estimation errors provide more insight into the filter behavior.

figure, 
subplot(211),plot(t,xSigTrue(1,:)-xSigEst(1,:))
title('Velocity State Error')
subplot(212),plot(t,xSigTrue(2,:)-xSigEst(2,:))
title('Friction State Error')
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The error plots show that the filter adapts after the friction change at 10 seconds and reduces the
estimation errors to zero. However, the error plots cannot be used for fault detection as they rely on
knowing the true states. Comparing the measured state value to the estimated state values for
acceleration and velocity could provide a detection mechanism.

figure
subplot(211), plot(t,ySig(1,:)-ySigEst(1,:))
title('Velocity Measurement Error')
subplot(212),plot(t,ySig(2,:)-ySigEst(2,:))
title('Acceleration Measurement Error')
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The acceleration error plot shows a minor difference in mean error around 10 seconds when the fault
is introduced. View the error statistics to see if the fault can be detected from the computed errors.
The acceleration and velocity errors are expected to be normally distributed (the noise models are all
Gaussian). Therefore, the kurtosis of the acceleration error may help identify when the error
distribution change from symmetrical to asymmetrical due to the friction change and resulting
change in error distribution.

figure,
subplot(211),plot(t,fKur(1,:))
title('Velocity Error Kurtosis')
subplot(212),plot(t,fKur(2,:))
title('Acceleration Error Kurtosis')
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Ignoring the first 4 seconds when the estimator is still converging and data is being collected, the
kurtosis of the errors is relatively constant with minor variations around 3 (the expected kurtosis
value for a Gaussian distribution). Thus, the error statistics cannot be used to automatically detect
friction changes in this application. Using the kurtosis of the errors is also difficult in this application
as the filter is adapting and continually driving the errors to zero, only giving a short time window
where the error distributions differ from zero.

Thus in this application, using the changes in estimated friction provide the best way to automatically
detect faults in the motor. The friction estimates (mean and standard deviation) from known no-fault
data provide expected bounds for the friction and it is easy to detect when these bounds are violated.
The following plot highlights this fault-detection approach.

figure
plot(t,xSigEst(2,:),[t nan t],[fMean+3*fSTD,nan,fMean-3*fSTD])
title('Friction Change Detection')
legend('Estimated Friction','No-Fault Friction Bounds')
axis([0 20 -10 20])
grid on
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Summary

This example has shown how to use an extended Kalman filter to estimate the friction in a simple DC
motor and use the friction estimate for fault detection.

See Also

More About
• “Model-Based Condition Indicators” on page 3-7
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Fault Detection Using Data Based Models
This example shows how to use a data-based modeling approach for fault detection.

Introduction

Early detection and isolation of anomalies in a machine's operation can help to reduce accidents,
reduce downtime and thus save operational costs. The approach involves processing live
measurements from a system's operation to flag any unexpected behavior that would point towards a
newly developed fault.

This example explores the following fault diagnosis aspects:

1 Detection of abnormal system behavior by residual analysis
2 Detection of deterioration by building models of a damaged system
3 Tracking system changes using online adaptation of model parameters

Identifying a Dynamic Model of System Behavior

In a model based approach to detection, a dynamic model of the concerned system is first built using
measured input and output data. A good model is able to accurately predict the response of the
system for a certain future time horizon. When the prediction is not good, the residuals may be large
and could contain correlations. These aspects are exploited to detect the incidence of failure.

Consider a building subject to impacts and vibrations. The source of vibrations can be different types
of stimuli depending upon the system such as wind gusts, contact with running engines and turbines,
or ground vibrations. The impacts are a result of impulsive bump tests on the system that are added
to excite the system sufficiently. Simulink model pdmMechanicalSystem.slx is a simple example of
such a structure. The excitation comes from periodic bumps as well as ground vibrations modeled by
filtered white noise. The output of the system is collected by a sensor that is subject to measurement
noise. The model is able to simulate various scenarios involving the structure in a healthy or a
damaged state.

sysA = 'pdmMechanicalSystem';
open_system(sysA)
% Set the model in the healthy mode of operation
set_param([sysA,'/Mechanical System'],'OverrideUsingVariant','Normal')
% Simulate the system and log the response data
sim(sysA)
ynormal = logsout.getElement('y').Values;
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The input signal was not measured; all we have recorded is the response ynormal. Hence we build a
dynamic model of the system using "blind identification" techniques. In particular, we build an ARMA
model of the recorded signal as a representation of the system. This approach works when the input
signal is assumed to be (filtered) white noise. Since the data is subject to periodic bumps, we split the
data into several pieces each starting at the incidence of a bump. This way, each data segment
contains the response to one bump plus random excitations - a situation that can be captured using a
time series model, where the effect of the bump is attributed to suitable initial conditions.

Ts = 1/256;  % data sample time
nr = 10;     % number of bumps in the signal
N = 512;     % length of data between bumps
znormal = cell(nr,1);
for ct = 1:nr
   ysegment = ynormal.Data((ct-1)*N+(1:500));
   z = iddata(ysegment,[],Ts);
   znormal{ct} = z;  % each segment has only one bump
end
plot(znormal{:}) % plot a sampling of the recorded segments
title('Measured Response Segments')
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Split the data into estimation and validation pieces.

ze = merge(znormal{1:5});
zv = merge(znormal{6:10});

Estimate a 7th order time-series model in state-space form using the ssest() command. The model
order was chosen by cross validation (checking the fit to validation data) and residual analysis
(checking that residuals are uncorrelated).

nx = 7;
model = ssest(ze, nx, 'form', 'canonical', 'Ts', Ts);
present(model)  % view model equations with parameter uncertainty

                                                                              
model =                                                                       
  Discrete-time identified state-space model:                                 
    x(t+Ts) = A x(t) + K e(t)                                                 
       y(t) = C x(t) + e(t)                                                   
                                                                              
  A =                                                                         
                       x1                  x2                  x3             
   x1                   0                   1                   0             
   x2                   0                   0                   1             
   x3                   0                   0                   0             
   x4                   0                   0                   0             
   x5                   0                   0                   0             
   x6                   0                   0                   0             
   x7  0.5548 +/- 0.04606   -2.713 +/- 0.2198    5.885 +/- 0.4495             
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                       x4                  x5                  x6             
   x1                   0                   0                   0             
   x2                   0                   0                   0             
   x3                   1                   0                   0             
   x4                   0                   1                   0             
   x5                   0                   0                   1             
   x6                   0                   0                   0             
   x7    -8.27 +/- 0.5121    9.234 +/- 0.3513   -7.956 +/- 0.1408             
                                                                              
                       x7                                                     
   x1                   0                                                     
   x2                   0                                                     
   x3                   0                                                     
   x4                   0                                                     
   x5                   0                                                     
   x6                   1                                                     
   x7   4.263 +/- 0.02599                                                     
                                                                              
  C =                                                                         
       x1  x2  x3  x4  x5  x6  x7                                             
   y1   1   0   0   0   0   0   0                                             
                                                                              
  K =                                                                         
                      y1                                                      
   x1  1.025 +/- 0.01401                                                      
   x2  1.444 +/-  0.0131                                                      
   x3  1.907 +/- 0.01271                                                      
   x4  2.385 +/- 0.01203                                                      
   x5  2.857 +/- 0.01456                                                      
   x6   3.26 +/-  0.0222                                                      
   x7  3.552 +/-  0.0336                                                      
                                                                              
Sample time: 0.0039063 seconds                                                
                                                                              
Parameterization:                                                             
   CANONICAL form with indices: 7.                                            
   Disturbance component: estimate                                            
   Number of free coefficients: 14                                            
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.
                                                                              
Status:                                                                       
Termination condition: Near (local) minimum, (norm(g) < tol)..                
Number of iterations: 7, Number of function evaluations: 15                   
                                                                              
Estimated using SSEST on time domain data "ze".                               
Fit to estimation data: [99.07 99.04 99.15 99.05 99.04]% (prediction focus)   
FPE: 0.6242, MSE: [0.5974 0.6531 0.5991 0.5871 0.6496]                        
More information in model's "Report" property.                                

The model display shows relatively small uncertainty in parameter estimates. We can confirm the
reliability by computing the 1-sd (99.73%) confidence bound on the estimated spectrum of the
measured signal.

h = spectrumplot(model);
showConfidence(h, 3)
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The confidence region is small, although there is about 30% uncertainty in the response at lower
frequencies. The next step in validation is to see how well the model predicts the responses in the
validation dataset zv. We use a 25-step ahead prediction horizon.

compare(zv, model, 25) % Validation against one dataset
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The plot shows that the model is able to predict the response in the first experiment of the validation
dataset 25 time steps (= 0.1 sec) in future with > 85% accuracy. To view the fit to other experiments
in the dataset, use the right-click context menu of the plot axes.

The final step in validating the model is to analyze the residuals generated by it. For a good model,
these residuals should be white, i.e., show statistically insignificant correlations for non-zero lags:

resid(model, zv)
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The residuals are mostly uncorrelated at nonzero lags. Having derived a model of the normal
behavior we move on to investigate how the model can be used to detect faults.

Fault Detection by Residual Analysis Using Model of Healthy State

Fault detection is tagging of unwanted or unexpected changes in observations of the system. A fault
causes changes in the system dynamics owing either to gradual wear and tear or sudden changes
caused by sensor failure or broken parts. When a fault appears, the model obtained under normal
working conditions is unable to predict the observed responses. This causes the difference between
the measured and predicted response (the residuals) to increase. Such deviations are usually flagged
by a large squared-sum-of-residuals or by presence of correlations.

Put the Simulink model in the damaged-system variant and simulate. We use a single bump as input
since the residual test needs white input with possibly a transient owing to initial conditions.

set_param([sysA,'/Mechanical System'],'OverrideUsingVariant','DamagedSystem');
set_param([sysA,'/Pulse'],'Period','5120') % to force only one bump
sim(sysA)
y = logsout.getElement('y').Values;
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resid(model, y.Data)
set_param([sysA,'/Pulse'],'Period','512') % restore original
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The residuals are now larger and show correlations at non-zero lags. This is the basic idea behind
detection of faults - creating a residual metric and observing how it changes with each new set of
measurements. What is used here is a simple residual based on 1-step prediction error. In practice,
more advanced residuals are generated that are tailor-made to the application needs.

Fault Detection Using Models of Normal and Deteriorated State

A more detailed approach to fault detection is to also identify a model of the faulty (damaged) state of
the system. We can then analyze which model is more likely to explain the live measurements from
the system. This arrangement can be generalized to models for various types of faults and thus used
for not just detecting the fault but also identifying which one ("isolation"). In this example, we take
the following approach:

1 We collect data with system operating in the normal (healthy) and a known wear-and-tear
induced end-of-life state.

2 We identify a dynamic model representing the behavior in each state.
3 We use a data clustering approach to draw a clear distinction between these states.
4 For fault detection, we collect data from the running machine and identify a model of its

behavior. We then predict which state (normal or damaged) is most likely to explain the observed
behavior.

We have already simulated the system in its normal operation mode. We now simulate the model
pdmMechanicalSystem in the "end of life" mode. This is the scenario where the system has already
deteriorated to its final state of permissible operation.
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set_param([sysA,'/Mechanical System'],'OverrideUsingVariant','DamagedSystem');
sim(sysA)
y = logsout.getElement('y').Values;
zfault = cell(nr,1);
for ct = 1:nr
   z = iddata(y.Data((ct-1)*N+(1:500)),[],Ts);
   zfault{ct} = z;
end

We now create a set of models, one for each data segment. As before we build 7th order time series
models in state-space form. Turn off covariance computation for speed.

mNormal =  cell(nr,1);
mFault = cell(nr, 1);
nx = order(model);
opt = ssestOptions('EstimateCovariance',0);
for ct = 1:nr
   mNormal{ct} = ssest(znormal{ct}, nx, 'form', 'canonical', 'Ts', Ts, opt);
   mFault{ct} = ssest(zfault{ct}, nx, 'form', 'canonical', 'Ts', Ts, opt);
end

Verify that the models mFault are a good representation of the faulty mode of operation:

compare(merge(zfault{:}), mFault{:}, 25)
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Normal and faulty estimated spectra are plotted below.

Color1 = 'k'; Color2 = 'r';
ModelSet1 = cat(2,mNormal,repmat({Color1},[nr, 1]))';
ModelSet2 = cat(2,mFault,repmat({Color2},[nr, 1]))';

spectrum(ModelSet1{:},ModelSet2{:})
axis([1  1000  -45  40])
title('Output Spectra (black: normal, red: faulty)')
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The spectrum plot shows the difference: the damaged mode has its primary resonances amplified but
the spectra are otherwise overlapping. Next, we create a way to quantitatively distinguish between
the normal and the faulty state. We can use data clustering and classification approaches such as:

• Fuzzy C-Means Clustering. See fcm() in Fuzzy Logic Toolbox.
• Support Vector Machine Classifier. See fitcsvm () in Statistics and Machine Learning Toolbox.
• Self-organizing Maps. See selforgmap() in Deep Learning Toolbox.

In this example, we use the Support Vector Machine classification technique. The clustering of
information from the two types of models (mNormal and mFault) can be based on different kinds of
information that these models can provide such as the locations of their poles and zeroes, their
locations of peak resonances or their list of parameters. Here, we classify the modes by the pole
locations corresponding to the two resonances. For clustering, we tag the poles of the healthy state
models with 'good' and the poles of the faulty state models with 'faulty'.

ModelTags = cell(nr*2,1);  % nr is number of data segments
ModelTags(1:nr) = {'good'};
ModelTags(nr+1:end) = {'faulty'};
ParData = zeros(nr*2,4);
plist = @(p)[real(p(1)),imag(p(1)),real(p(3)),imag(p(3))]; % poles of dominant resonances
for ct = 1:nr
   ParData(ct,:) =  plist(esort(pole(mNormal{ct})));
   ParData(nr+ct,:) = plist(esort(pole(mFault{ct})));
end
cl = fitcsvm(ParData,ModelTags,'KernelFunction','rbf', ...

4 Detect and Diagnose Faults

4-96



   'BoxConstraint',Inf,'ClassNames',{'good', 'faulty'});
cl.ConvergenceInfo.Converged

ans =

  logical

   1

cl is an SVM classifier that separates the training data ParData into good and faulty regions. Using
the predict method of this classifier one can assign an input nx-by-1 vector to one of the two
regions.

Now we can test the classifier for its prediction (normal vs damaged) collect data batches from a
system whose parameters are changing in a manner that it goes from being healthy (mode =
'Normal') to being fully damaged (mode = 'DamagedSystem') in a continuous manner. To simulate this
scenario, we put the model in 'DeterioratingSystem' mode.

set_param([sysA,'/Mechanical System'],'OverrideUsingVariant','DeterioratingSystem');
sim(sysA)
ytv = logsout.getElement('y').Values; ytv = squeeze(ytv.Data);
PredictedMode = cell(nr,1);
for ct = 1:nr
   zSegment = iddata(ytv((ct-1)*512+(1:500)),[],Ts);
   mSegment = ssest(zSegment, nx, 'form', 'canonical', 'Ts', Ts);
   PredictedMode(ct) = predict(cl, plist(esort(pole(mSegment))));
end

I = strcmp(PredictedMode,'good');
Tags = ones(nr,1);
Tags(~I) = -1;
t = (0:5120)'*Ts;  % simulation time
Time = t(1:512:end-1);
plot(Time(I),Tags(I),'g*',Time(~I),Tags(~I),'r*','MarkerSize',12)
grid on
axis([0 20 -2 2])
title('Green: Normal, Red: Faulty state')
xlabel('Data evaluation time')
ylabel('Prediction')
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The plot shows that the classifier predicts the behavior up to about the mid-point to be normal and in
a state of fault thereafter.

Fault Detection by Online Adaptation of Model Parameters

The preceding analysis used batches of data collected at different times during the operation of the
system. An alternative, often more convenient, way of monitoring the health of the system is to create
an adaptive model of its behavior. The new measurements are processed continuously and are used to
update the parameters of a model in a recursive fashion. The effect of wear and tear or a fault is
indicated by a change in the model parameter values.

Consider the wear-and-tear scenario again. As the system ages, there is a greater "rattling" which
manifests itself as excitation of several resonant modes as well as a rise in the system's peak
response. This scenario is described in model pdmDeterioratingSystemEstimation which is
same as the 'DeterioratingSystem' mode of pdmMechanicalSystem except that the impulsive bumps
that were added for offline identification are not present. The response of the system is passed to a
"Recursive Polynomial Model Estimator" block which has been configured to estimate the parameters
of an ARMA model structure. The actual system starts in a healthy state but deteriorates to end-of-life
conditions over a time span of 200 seconds.

initial_model = translatecov(@(x)idpoly(x),model);
sysB = 'pdmDeterioratingSystemEstimation';
open_system(sysB);

The "ARMA model" block has been initialized using the parameters and covariance data from the
estimated model of normal behavior derived in the previous section after conversion to polynomial
(ARMA) format. The translatecov() function is used so that the parameter covariance data is also
converted. The block uses a "Forgetting factor" algorithm with the forgetting factor set to slightly less
than 1 to update the parameters at each sampling instant. The choice of forgetting factor influences
how rapidly the system updates. A small value means that the updates will have high variance while a
large value will make it harder for the estimator to adapt to fast changes.

The model parameters estimate is used to update the output spectrum and its 3-sd confidence region.
The system will have clearly changed when the spectrum's confidence region does not overlap that of
the healthy system at frequencies of interest. A fault detection threshold is shown using a black line
in the plot marking the maximum allowed gains at certain frequencies. As changes in the system
accumulate, the spectrum drifts across this line. This serves as a visual indicator of a fault which can
be used to call for repairs in real-life systems.

Run the simulation and watch the spectrum plot as it updates.

sim(sysB)
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The running estimates of model parameters are also used to compute the system pole locations which
are then fed into the SVM classifier to predict if the system is in the "good" or "fault" state. This
decision is also displayed on the plot. When the normalized score of prediction is less than .3, the
decision is considered tentative (close to the boundary of distinction). See the script
pdmARMASpectrumPlot.m for details on how the running estimate of spectrum and classifier
prediction is computed.

It is possible to implement the adaptive estimation and plotting procedure outside Simulink using the
recursiveARMA() function. Both the "Recursive Polynomial Model Estimator" block as well as the
recursiveARMA() function support code generation for deployment purposes.

The classification scheme can be generalized to the case where there are several known modes of
failure. For this we will need multi-group classifiers where a mode refers to a certain type of failure.
These aspects are not explored in this example.

Conclusions

This example showed how system identification schemes combined with data clustering and
classification approaches can assist in detection and isolation of faults. Both sequential batch analysis
as well as online adaptation schemes were discussed. A model of ARMA structure of the measured
output signal was identified. A similar approach can be adopted in situations where one has access to
both input and output signals, and would like to employ other types of model structures such as the
State-space or Box-Jenkins polynomial models.

In this example, we found that:

4 Detect and Diagnose Faults

4-100



1 Correlations in residuals based on a model of normal operation can indicate onset of failure.
2 Gradually worsening faults can be detected by employing a continuously adapting model of the

system behavior. Preset thresholds on a model's characteristics such as bounds on its output
spectrum can help visualize the onset and progression of failures.

3 When the source of a fault needs to be isolated, a viable approach is to create separate models of
concerned failure modes beforehand. Then a classification approach can be used to assign the
predicted state of the system to one of these modes.

See Also

More About
• “Model-Based Condition Indicators” on page 3-7
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Detect Abrupt System Changes Using Identification Techniques
This example shows how to detect abrupt changes in the behavior of a system using online estimation
and automatic data segmentation techniques. This example uses functionality from System
Identification Toolbox™, and does not require Predictive Maintenance Toolbox™.

Problem Description

Consider a linear system whose transport delay changes from two to one second. Transport delay is
the time taken for the input to affect the measured output. In this example, you detect the change in
transport delay using online estimation and data segmentation techniques. Input-output data
measured from the system is available in the data file pdmAbruptChangesData.mat.

Load and plot the data.

load pdmAbruptChangesData.mat
z = iddata(z(:,1),z(:,2));
plot(z)
grid on

The transport delay change takes place around 20 seconds, but is not easy to see in the plot.

Model the system using an ARX structure with one A polynomial coefficient, two B polynomial
coefficients, and one delay.

y(t) + ay(t − 1) = b1u(t − 1) + b2u(t − 2)
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Here, A = [1 a] and B = [0 b1 b2].

The leading coefficient of the B polynomial is zero because the model has no feedthrough. As the
system dynamics change, the values of the three coefficients a, b1, and b2 change. When b1 is close
to zero, the effective transport delay will be 2 samples because the B polynomial has 2 leading zeros.
When b1 is larger, the effective transport delay will be 1 sample.

Thus, to detect changes in transport delay you can monitor changes in the B polynomial coefficients.

Use Online Estimation for Change Detection

Online estimation algorithms update model parameters and state estimates in a recursive manner, as
new data becomes available. You can perform online estimation using Simulink blocks from the
System Identification Toolbox library or at the command line using recursive identification routines
such as recursiveARX. Online estimation can be used to model time varying dynamics such as aging
machinery and changing weather patterns, or to detect faults in electromechanical systems.

As the estimator updates the model parameters, a change in system dynamics (delay) will be
indicated by a larger than usual change in the values of the parameters b1 and b2. Changes in the B
polynomial coefficients will be tracked by computing:

L(t) = abs(B(t) − B(t − 1))

Use the recursiveARX object for online parameter estimation of the ARX model.

na = 1;
nb = 2;
nk = 1;
Estimator = recursiveARX([na nb nk]);

Specify the recursive estimation algorithm as NormalizedGradient and the adaptation gain as 0.9.

Estimator.EstimationMethod = 'NormalizedGradient';
Estimator.AdaptationGain = .9;

Extract the raw data from the iddata object, z.

Output = z.OutputData; 
Input = z.InputData; 
t = z.SamplingInstants;
N = length(t);

Use animated lines to plot the estimated parameter values and L. Initialize these animated lines prior
to estimation. To simulate streaming data, feed the data to the estimator one sample at a time.
Initialize the model parameters before estimation, and then perform online estimation.

%% Initialize plot
Colors = {'r','g','b'};
ax = gca;
cla(ax)
for k = 3:-1:1
   h(k) = animatedline('Color',Colors{k}); % lines for a, b1 and b2 parameters
end
h(4) =  animatedline('Marker','.','Color',[0 0 0]); % line for L
legend({'a','b1','b2','Deviation'},'location','southeast')
title('ARX Recursive Parameter Estimation')
xlabel('Time (seconds)')
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ylabel('Parameter value')
ax.XLim = [t(1),t(end)];
ax.YLim = [-2, 2];
grid on
box on

%% Now perform recursive estimation and show results 
n0 = 6;
L = NaN(N,nk);
B_old = NaN(1,3);
for ct = 1:N
   [A,B] = step(Estimator,Output(ct),Input(ct)); 
   if ct>n0
      L(ct) = norm(B-B_old);
      B_old = B;
   end
   addpoints(h(1),t(ct),A(2))
   addpoints(h(2),t(ct),B(2))
   addpoints(h(3),t(ct),B(3))
   addpoints(h(4),t(ct),L(ct))
   pause(0.1)
end

The first n0 = 6 samples of the data are not used for computing the change-detector, L. During this
interval the parameter changes are large owing to the unknown initial conditions.

Find the location of all peaks in L by using the findpeaks command from Signal Processing Toolbox.

4 Detect and Diagnose Faults

4-104



[v,Loc] = findpeaks(L);
[~,I] = max(v);
line(t(Loc(I)),L(Loc(I)),'parent',ax,'Marker','o','MarkerEdgeColor','r',...
   'MarkerFaceColor','y','MarkerSize',12)

fprintf('Change in system delay detected at sample number %d.\n',Loc(I));

Change in system delay detected at sample number 21.

The location of the largest peak corresponds to the largest change in the B polynomial coefficients,
and is thus the location of a change in transport delay.

While online estimation techniques provide more options for choosing estimation methods and model
structure, the data segmentation method can help automate detection of abrupt and isolated changes.

Use Data Segmentation for Change Detection

A data segmentation algorithm automatically segments the data into regions of different dynamic
behavior. This is useful for capturing abrupt changes arising from a failure or change of operating
conditions. The segment command facilitates this operation for single-output data. segment is an
alternative to online estimation techniques when you do not need to capture the time-varying
behavior during system operation.

Applications of data segmentation include segmentation of speech signals (each segment corresponds
to a phoneme), failure detection (the segments correspond to operation with and without failures),
and estimation of different working modes of a system.
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Inputs to the segment command include the measured data, the model orders, and a guess for the
variance, r2, of the noise that affects the system. If the variance is entirely unknown, it can be
estimated automatically. Perform data segmentation using an ARX model of the same orders as used
for online estimation. Set the variance to 0.1.

[seg,V,tvmod] = segment(z,[na nb nk],0.1);

The method for segmentation is based on AFMM (adaptive forgetting through multiple models). For
details about the method, see Andersson, Int. J. Control Nov 1985.

A multi-model approach is used to track the time-varying system. The resulting tracking model is an
average of the multiple models and is returned as the third output argument of segment, tvmod.

Plot the parameters of the tracking model.

plot(tvmod)
legend({'a','b_1','b_2'},'Location','best')
xlabel('Samples'), ylabel('Parameter value')
title('Time-varying estimates')

Note the similarity between these parameter trajectories and those estimated using recursiveARX.

segment determines the time points when changes have occurred using tvmod and q, the probability
that a model exhibits abrupt changes. These time points are used to construct the segmented model
by employing a smoothing procedure over the tracking model.

The parameter values of the segmented model are returned in seg, the first output argument of
segment. The values in each successive row are the parameter values of the underlying segmented
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model at the corresponding time instants. These values remain constant over successive rows and
change only when the system dynamics are determined to have changed. Thus, values in seg are
piecewise constant.

Plot the estimated values for parameters a, b1, and b2.

plot(seg)
title('Parameter value segments')
legend({'a','b1','b2'},'Location','best')
xlabel('Time (seconds)')
ylabel('Parameter value')

A change is seen in the parameter values around sample number 19. The value of b1 changes from a
small (close to zero) to large (close to 1) value. The value of b2 shows the opposite pattern. This
change in the values of the B parameters indicates a change in the transport delay.

The second output argument of segment, V, is the loss function for the segmented model (i.e. the
estimated prediction error variance for the segmented model). You can use V to asses the quality of
the segmented model.

Note that the two most important inputs for the segmentation algorithm are r2 and q, the fourth
input argument to segment. In this example, q was not specified because the default value, 0.01, was
adequate. A smaller value of r2 and a larger value of q will result in more segmentation points. To
find appropriate values, you can vary r2 and q and use the ones that work the best. Typically, the
segmentation algorithm is more sensitive to r2 than q.
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Conclusions

The use of online estimation and data segmentation techniques for detecting abrupt changes in
system dynamics was evaluated. Online estimation techniques offer more flexibility and more control
over the estimation process. However, for changes that are infrequent or abrupt, segment facilitates
an automatic detection technique based on smoothing of time-varying parameter estimates.

See Also

More About
• “Model-Based Condition Indicators” on page 3-7
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Chemical Process Fault Detection Using Deep Learning
This example shows how to use simulation data to train a neural network that can detect faults in a
chemical process. The network detects the faults in the simulated process with high accuracy. The
typical workflow is as follows:

1 Preprocess the data
2 Design the layer architecture
3 Train the network
4 Perform validation
5 Test the network

Download Data Set

This example uses MATLAB-formatted files converted by MathWorks® from the Tennessee Eastman
Process (TEP) simulation data [1] on page 4-0 . These files are available at the MathWorks support
files site. See the disclaimer.

The data set consists of four components — fault-free training, fault-free testing, faulty training, and
faulty testing. Download each file separately.

url = 'https://www.mathworks.com/supportfiles/predmaint/chemical-process-fault-detection-data/faultytesting.mat';
websave('faultytesting.mat',url);
url = 'https://www.mathworks.com/supportfiles/predmaint/chemical-process-fault-detection-data/faultytraining.mat';
websave('faultytraining.mat',url);
url = 'https://www.mathworks.com/supportfiles/predmaint/chemical-process-fault-detection-data/faultfreetesting.mat';
websave('faultfreetesting.mat',url);
url = 'https://www.mathworks.com/supportfiles/predmaint/chemical-process-fault-detection-data/faultfreetraining.mat';
websave('faultfreetraining.mat',url);

Load the downloaded files into the MATLAB® workspace.

load('faultfreetesting.mat');
load('faultfreetraining.mat');
load('faultytesting.mat');
load('faultytraining.mat');

Each component contains data from simulations that were run for every permutation of two
parameters:

• Fault Number — For faulty data sets, an integer value from 1 to 20 that represents a different
simulated fault. For fault-free data sets, a value of 0.

• Simulation run — For all data sets, integer values from 1 to 500, where each value represents a
unique random generator state for the simulation.

The length of each simulation was dependent on the data set. All simulations were sampled every
three minutes.

• Training data sets contain 500 time samples from 25 hours of simulation.
• Testing data sets contain 960 time samples from 48 hours of simulation.

Each data frame has the following variables in its columns:
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• Column 1 (faultNumber) indicates the fault type, which varies from 0 through 20. A fault number
0 means fault-free while fault numbers 1 to 20 represent different fault types in the TEP.

• Column 2 (simulationRun) indicates the number of times the TEP simulation ran to obtain
complete data. In the training and test data sets, the number of runs varies from 1 to 500 for all
fault numbers. Every simulationRun value represents a different random generator state for the
simulation.

• Column 3 (sample) indicates the number of times TEP variables were recorded per simulation.
The number varies from 1 to 500 for the training data sets and from 1 to 960 for the testing data
sets. The TEP variables (columns 4 to 55) were sampled every 3 minutes for a duration of 25 hours
and 48 hours for the training and testing data sets respectively.

• Columns 4–44 (xmeas_1 through xmeas_41) contain the measured variables of the TEP.
• Columns 45–55 (xmv_1 through xmv_11) contain the manipulated variables of the TEP.

Examine subsections of two of the files.

head(faultfreetraining,4)    

ans=4×55 table
    faultNumber    simulationRun    sample    xmeas_1    xmeas_2    xmeas_3    xmeas_4    xmeas_5    xmeas_6    xmeas_7    xmeas_8    xmeas_9    xmeas_10    xmeas_11    xmeas_12    xmeas_13    xmeas_14    xmeas_15    xmeas_16    xmeas_17    xmeas_18    xmeas_19    xmeas_20    xmeas_21    xmeas_22    xmeas_23    xmeas_24    xmeas_25    xmeas_26    xmeas_27    xmeas_28    xmeas_29    xmeas_30    xmeas_31    xmeas_32    xmeas_33    xmeas_34    xmeas_35    xmeas_36    xmeas_37    xmeas_38    xmeas_39    xmeas_40    xmeas_41    xmv_1     xmv_2     xmv_3     xmv_4     xmv_5     xmv_6     xmv_7     xmv_8     xmv_9     xmv_10    xmv_11


         0               1            1       0.25038      3674       4529      9.232     26.889     42.402     2704.3     74.863     120.41     0.33818      80.044      51.435      2632.9      25.029      50.528      3101.1      22.819      65.732      229.61      341.22       94.64      77.047      32.188      8.8933      26.383       6.882      18.776      1.6567      32.958      13.823      23.978      1.2565      18.579      2.2633      4.8436      2.2986     0.017866     0.8357     0.098577     53.724      43.828     62.881    53.744    24.657    62.544    22.137    39.935    42.323    47.757     47.51    41.258    18.447
         0               1            2       0.25109    3659.4     4556.6     9.4264     26.721     42.576       2705         75     120.41      0.3362      80.078      50.154      2633.8      24.419      48.772        3102      23.333      65.716      230.54       341.3      94.595      77.434      32.188      8.8933      26.383       6.882      18.776      1.6567      32.958      13.823      23.978      1.2565      18.579      2.2633      4.8436      2.2986     0.017866     0.8357     0.098577     53.724      43.828     63.132    53.414    24.588    59.259    22.084    40.176    38.554    43.692    47.427    41.359    17.194
         0               1            3       0.25038    3660.3     4477.8     9.4426     26.875      42.07     2706.2     74.771     120.42     0.33563       80.22      50.302      2635.5      25.244      50.071      3103.5      21.924      65.732      230.08      341.38      94.605      77.466      31.767      8.7694      26.095      6.8259      18.961      1.6292      32.985      13.742      23.897      1.3001      18.765      2.2602      4.8543        2.39     0.017866     0.8357     0.098577     53.724      43.828     63.117    54.357    24.666    61.275     22.38    40.244     38.99    46.699    47.468    41.199     20.53
         0               1            4       0.24977    3661.3     4512.1     9.4776     26.758     42.063     2707.2     75.224     120.39     0.33553      80.305       49.99      2635.6      23.268      50.435      3102.8      22.948      65.781      227.91      341.71      94.473      77.443      31.767      8.7694      26.095      6.8259      18.961      1.6292      32.985      13.742      23.897      1.3001      18.765      2.2602      4.8543        2.39     0.017866     0.8357     0.098577     53.724      43.828       63.1    53.946    24.725    59.856    22.277    40.257    38.072    47.541    47.658    41.643    18.089

head(faultytraining,4)       

ans=4×55 table
    faultNumber    simulationRun    sample    xmeas_1    xmeas_2    xmeas_3    xmeas_4    xmeas_5    xmeas_6    xmeas_7    xmeas_8    xmeas_9    xmeas_10    xmeas_11    xmeas_12    xmeas_13    xmeas_14    xmeas_15    xmeas_16    xmeas_17    xmeas_18    xmeas_19    xmeas_20    xmeas_21    xmeas_22    xmeas_23    xmeas_24    xmeas_25    xmeas_26    xmeas_27    xmeas_28    xmeas_29    xmeas_30    xmeas_31    xmeas_32    xmeas_33    xmeas_34    xmeas_35    xmeas_36    xmeas_37    xmeas_38    xmeas_39    xmeas_40    xmeas_41    xmv_1     xmv_2     xmv_3     xmv_4     xmv_5     xmv_6     xmv_7     xmv_8     xmv_9     xmv_10    xmv_11


         1               1            1       0.25038      3674       4529      9.232     26.889     42.402     2704.3     74.863     120.41     0.33818      80.044      51.435      2632.9      25.029      50.528      3101.1      22.819      65.732      229.61      341.22       94.64      77.047      32.188      8.8933      26.383       6.882      18.776      1.6567      32.958      13.823      23.978      1.2565      18.579      2.2633      4.8436      2.2986     0.017866     0.8357     0.098577     53.724      43.828     62.881    53.744    24.657    62.544    22.137    39.935    42.323    47.757     47.51    41.258    18.447
         1               1            2       0.25109    3659.4     4556.6     9.4264     26.721     42.576       2705         75     120.41      0.3362      80.078      50.154      2633.8      24.419      48.772        3102      23.333      65.716      230.54       341.3      94.595      77.434      32.188      8.8933      26.383       6.882      18.776      1.6567      32.958      13.823      23.978      1.2565      18.579      2.2633      4.8436      2.2986     0.017866     0.8357     0.098577     53.724      43.828     63.132    53.414    24.588    59.259    22.084    40.176    38.554    43.692    47.427    41.359    17.194
         1               1            3       0.25038    3660.3     4477.8     9.4426     26.875      42.07     2706.2     74.771     120.42     0.33563       80.22      50.302      2635.5      25.244      50.071      3103.5      21.924      65.732      230.08      341.38      94.605      77.466      31.767      8.7694      26.095      6.8259      18.961      1.6292      32.985      13.742      23.897      1.3001      18.765      2.2602      4.8543        2.39     0.017866     0.8357     0.098577     53.724      43.828     63.117    54.357    24.666    61.275     22.38    40.244     38.99    46.699    47.468    41.199     20.53
         1               1            4       0.24977    3661.3     4512.1     9.4776     26.758     42.063     2707.2     75.224     120.39     0.33553      80.305       49.99      2635.6      23.268      50.435      3102.8      22.948      65.781      227.91      341.71      94.473      77.443      31.767      8.7694      26.095      6.8259      18.961      1.6292      32.985      13.742      23.897      1.3001      18.765      2.2602      4.8543        2.39     0.017866     0.8357     0.098577     53.724      43.828       63.1    53.946    24.725    59.856    22.277    40.257    38.072    47.541    47.658    41.643    18.089

Clean Data

Remove data entries with the fault numbers 3, 9, and 15 in both the training and testing data sets.
These fault numbers are not recognizable, and the associated simulation results are erroneous.

faultytesting(faultytesting.faultNumber == 3,:) = [];
faultytesting(faultytesting.faultNumber == 9,:) = [];
faultytesting(faultytesting.faultNumber == 15,:) = [];

faultytraining(faultytraining.faultNumber == 3,:) = [];
faultytraining(faultytraining.faultNumber == 9,:) = [];
faultytraining(faultytraining.faultNumber == 15,:) = [];

Divide Data

Divide the training data into training and validation data by reserving 20 percent of the training data
for validation. Using a validation data set enables you to evaluate the model fit on the training data
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set while you tune the model hyperparameters. Data splitting is commonly used to prevent the
network from overfitting and underfitting.

Get the total number of rows in both faulty and fault-free training data sets.

H1 = height(faultfreetraining); 
H2 = height(faultytraining);    

The simulation run is the number of times the TEP process was repeated with a particular fault type.
Get the maximum simulation run from the training data set as well as from the testing data set.

msTrain = max(faultfreetraining.simulationRun); 
msTest = max(faultytesting.simulationRun);      

Calculate the maximum simulation run for the validation data.

rTrain = 0.80; 
msVal = ceil(msTrain*(1 - rTrain));    
msTrain = msTrain*rTrain;   

Get the maximum number of samples or time steps (that is, the maximum number of times that data
was recorded during a TEP simulation).

sampleTrain = max(faultfreetraining.sample);
sampleTest = max(faultfreetesting.sample);

Get the division point (row number) in the fault-free and faulty training data sets to create validation
data sets from the training data sets.

rowLim1 = ceil(rTrain*H1);
rowLim2 = ceil(rTrain*H2);

trainingData = [faultfreetraining{1:rowLim1,:}; faultytraining{1:rowLim2,:}];
validationData = [faultfreetraining{rowLim1 + 1:end,:}; faultytraining{rowLim2 + 1:end,:}];
testingData = [faultfreetesting{:,:}; faultytesting{:,:}];

Network Design and Preprocessing

The final data set (consisting of training, validation, and testing data) contains 52 signals with 500
uniform time steps. Hence, the signal, or sequence, needs to be classified to its correct fault number
which makes it a problem of sequence classification.

• Long short-term memory (LSTM) networks are suited to the classification of sequence data.
• LSTM networks are good for time-series data as they tend to remember the uniqueness of past

signals in order to classify new signals
• An LSTM network enables you to input sequence data into a network and make predictions based

on the individual time steps of the sequence data. For more information on LSTM networks, see
“Long Short-Term Memory Networks” (Deep Learning Toolbox).

• To train the network to classify sequences using the trainNetwork function, you must first
preprocess the data. The data must be in cell arrays, where each element of the cell array is a
matrix representing a set of 52 signals in a single simulation. Each matrix in the cell array is the
set of signals for a particular simulation of TEP and can either be faulty or fault-free. Each set of
signals points to a specific fault class ranging from 0 through 20.

As was described previously in the Data Set section, the data contains 52 variables whose values are
recorded over a certain amount of time in a simulation. The sample variable represents the number
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of times these 52 variables are recorded in one simulation run. The maximum value of the sample
variable is 500 in the training data set and 960 in the testing data set. Thus, for each simulation,
there is a set of 52 signals of length 500 or 960. Each set of signals belongs to a particular simulation
run of the TEP and points to a particular fault type in the range 0 – 20.

The training and test datasets both contain 500 simulations for each fault type. Twenty percent (from
training) is kept for validation which leaves the training data set with 400 simulations per fault type
and validation data with 100 simulations per fault type. Use the helper function helperPreprocess
to create sets of signals, where each set is a double matrix in a single element of the cell array that
represents a single TEP simulation. Hence, the sizes of the final training, validation, and testing data
sets are as follows:

• Size of Xtrain: (Total number of simulations) X (Total number of fault types) = 400 X 18 = 7200
• Size of XVal: (Total number of simulations) X (Total number of fault types) = 100 X 18 = 1800
• Size of Xtest: (Total number of simulations) X (Total number of fault types) = 500 X 18 = 9000

In the data set, the first 500 simulations are of 0 fault type (fault-free) and the order of the
subsequent faulty simulations is known. This knowledge enables the creation of true responses for
the training, validation, and testing data sets.

Xtrain = helperPreprocess(trainingData,sampleTrain);
Ytrain = categorical([zeros(msTrain,1);repmat([1,2,4:8,10:14,16:20],1,msTrain)']);
 
XVal = helperPreprocess(validationData,sampleTrain);
YVal = categorical([zeros(msVal,1);repmat([1,2,4:8,10:14,16:20],1,msVal)']);
 
Xtest = helperPreprocess(testingData,sampleTest);
Ytest = categorical([zeros(msTest,1);repmat([1,2,4:8,10:14,16:20],1,msTest)']);

Normalize Data Sets

Normalization is a technique that scales the numeric values in a data set to a common scale without
distorting differences in the range of values. This technique ensures that a variable with a larger
value does not dominate other variables in the training. It also converts the numeric values in a
higher range to a smaller range (usually –1 to 1) without losing any important information required
for training.

Compute the mean and the standard deviation for 52 signals using data from all simulations in the
training data set.

tMean = mean(trainingData(:,4:end))';
tSigma = std(trainingData(:,4:end))';

Use the helper function helperNormalize to apply normalization to each cell in the three data sets
based on the mean and standard deviation of the training data.

Xtrain = helperNormalize(Xtrain, tMean, tSigma);
XVal = helperNormalize(XVal, tMean, tSigma);
Xtest = helperNormalize(Xtest, tMean, tSigma);

Visualize Data

The Xtrain data set contains 400 fault-free simulations followed by 6800 faulty simulations.Visualize
the fault-free and faulty data. First, create a plot of the fault-free data. For the purposes of this
example, plot and label only 10 signals in the Xtrain data set to create an easy-to-read figure.
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figure;
splot = 10;    
plot(Xtrain{1}(1:10,:)');   
xlabel("Time Step");
title("Training Observation for Non-Faulty Data");
legend("Signal " + string(1:splot),'Location','northeastoutside');

Now, compare the fault-free plot to a faulty plot by plotting any of the cell array elements after 400.

figure;
plot(Xtrain{1000}(1:10,:)');   
xlabel("Time Step");
title("Training Observation for Faulty Data");
legend("Signal " + string(1:splot),'Location','northeastoutside');
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Layer Architecture and Training Options

LSTM layers are a good choice for sequence classification as LSTM layers tend to remember only the
important aspects of the input sequence.

• Specify the input layer sequenceInputLayer to be of the same size as the number of input
signals (52).

• Specify 3 LSTM hidden layers with 52, 40, and 25 units. This specification is inspired by the
experiment performed in [2] on page 4-0 . For more information on using LSTM networks for
sequence classification, see “Sequence Classification Using Deep Learning” (Deep Learning
Toolbox).

• Add 3 dropout layers in between the LSTM layers to prevent over-fitting. A dropout layer
randomly sets input elements of the next layer to zero with a given probability so that the network
does not become sensitive to a small set of neurons in the layer

• Finally, for classification, include a fully connected layer of the same size as the number of output
classes (18). After the fully connected layer, include a softmax layer that assigns decimal
probabilities (prediction possibility) to each class in a multi-class problem and a classification
layer to output the final fault type based on output from the softmax layer.

numSignals = 52;
numHiddenUnits2 = 52;
numHiddenUnits3 = 40;
numHiddenUnits4 = 25;
numClasses = 18;
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layers = [ ...
    sequenceInputLayer(numSignals)
    lstmLayer(numHiddenUnits2,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits3,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits4,'OutputMode','last')
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Set the training options that trainNetwork uses.

Maintain the default value of name-value pair 'ExecutionEnvironment' as 'auto'. With this
setting, the software chooses the execution environment automatically. If a GPU is available (requires
Parallel Computing Toolbox™ and a CUDA® enabled GPU with compute capability 3.0 or higher), the
software uses the GPU. Otherwise, the software uses CPU. Because this example uses a large amount
of data, using GPU speeds up training time considerably.

Setting the name-value argument pair 'Shuffle' to 'every-epoch' avoids discarding the same
data every epoch.

For more information on training options for deep learning, see trainingOptions.

maxEpochs = 30;
miniBatchSize = 50;  
 
options = trainingOptions('adam', ...
    'ExecutionEnvironment','auto', ...
    'GradientThreshold',1, ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize', miniBatchSize,...
    'Shuffle','every-epoch', ...
    'Verbose',0, ...
    'Plots','training-progress',...
    'ValidationData',{XVal,YVal});

Train Network

Train the LSTM network using trainNetwork.

net = trainNetwork(Xtrain,Ytrain,layers,options);
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The training progress figure displays a plot of the network accuracy. To the right of the figure, view
information on the training time and settings.

Testing Network

Run the trained network on the test set and predict the fault type in the signals.

Ypred = classify(net,Xtest,...
    'MiniBatchSize', miniBatchSize,...
    'ExecutionEnvironment','auto');

Calculate the accuracy. The accuracy is the number of true labels in the test data that match the
classifications from classify divided by the number of images in the test data.

acc = sum(Ypred == Ytest)./numel(Ypred)

acc = 0.9992

High accuracy indicates that the neural network is successfully able to identify the fault type of
unseen signals with minimal errors. Hence, the higher the accuracy, the better the network.

Plot a confusion matrix using true class labels of the test signals to determine how well the network
identifies each fault.

confusionchart(Ytest,Ypred);
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Using a confusion matrix, you can assess the effectiveness of a classification network. the confusion
matrix has numerical values in the main diagonal and zeros elsewhere. The trained network in this
example is effective and classifies more than 99% of signals correctly.
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Helper Functions

helperPreprocess

The helper function helperPreprocess uses the maximum sample number to preprocess the data.
The sample number indicates the signal length, which is consistent across the data set. A for-loop
goes over the data set with a signal length filter to form sets of 52 signals. Each set is an element of a
cell array. Each cell array represents a single simulation.

function processed = helperPreprocess(mydata,limit)
    H = size(mydata);
    processed = {};
    for ind = 1:limit:H
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        x = mydata(ind:(ind+(limit-1)),4:end);
        processed = [processed; x'];
    end
end

helperNormalize

The helper function helperNormalize uses the data, mean, and standard deviation to normalize the
data.

function data = helperNormalize(data,m,s)
    for ind = 1:size(data)
        data{ind} = (data{ind} - m)./s;
    end
end

See Also
trainNetwork | trainingOptions

More About
• “Long Short-Term Memory Networks” (Deep Learning Toolbox)
• “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
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Predict Remaining Useful Life

• “Feature Selection for Remaining Useful Life Prediction” on page 5-2
• “Models for Predicting Remaining Useful Life” on page 5-4
• “RUL Estimation Using Identified Models or State Estimators” on page 5-6
• “RUL Estimation Using RUL Estimator Models” on page 5-7
• “Update RUL Prediction as Data Arrives” on page 5-11
• “Similarity-Based Remaining Useful Life Estimation” on page 5-15
• “Wind Turbine High-Speed Bearing Prognosis” on page 5-37
• “Condition Monitoring and Prognostics Using Vibration Signals” on page 5-54
• “Nonlinear State Estimation of a Degrading Battery System” on page 5-69
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Feature Selection for Remaining Useful Life Prediction
For reliable remaining useful life (RUL) estimations, you want a condition indicator whose change
over time is observable and connected with the system degradation process in a reliable, measurable
way. The remaining useful life of a machine is the expected life or usage time remaining before the
machine requires repair or replacement. Predicting remaining useful life from system data is a
central goal of predictive-maintenance algorithms.

After you identify condition indicators (see “Condition Indicators for Monitoring, Fault Detection, and
Prediction” on page 3-2), selecting useful condition indicators out of all available features is the next
step in building a reliable RUL prediction model.

Predictive Maintenance Toolbox offers three feature selection metrics for accurate RUL prediction:
monotonicity, trendability, and prognosability. These metrics rank the identified condition indicators
on a scale ranging from 0 through 1. A higher ranked feature tracks the degradation process more
reliably and hence, is more desirable to train the RUL prediction model.

• Monotonicity characterizes the trend of a feature as the system evolves toward failure. As a
system gets progressively closer to failure, a suitable condition indicator has a monotonic positive
or negative trend. For more information, see monotonicity.

• Prognosability is a measure of the variability of a feature at failure relative to the range between
its initial and final values. A more prognosable feature has less variation at failure relative to the
range between its initial and final values. For more information, see prognosability.

• Trendability provides a measure of similarity between the trajectories of a feature measured in
multiple run-to-failure experiments. Trendability of a candidate condition indicator is defined as
the smallest absolute correlation between measurements. For more information, see
trendability.

In addition to using these functions at the command line, you can apply these feature-selection
metrics in Diagnostic Feature Designer by selecting the prognostic ranking options.

Using the selected features to train an appropriate RUL estimation model is the next step in the
algorithm-design process. For information, see “Models for Predicting Remaining Useful Life” on
page 5-4.

See Also
monotonicity | prognosability | trendability

More About
• “Wind Turbine High-Speed Bearing Prognosis” on page 5-37
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• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2
• “Perform Prognostic Feature Ranking for a Degrading System Using Diagnostic Feature

Designer” on page 7-59
• “Models for Predicting Remaining Useful Life” on page 5-4
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Models for Predicting Remaining Useful Life
The remaining useful life (RUL) of a machine is the expected life or usage time remaining before the
machine requires repair or replacement. Predicting remaining useful life from system data is a
central goal of predictive-maintenance algorithms.

The term lifetime or usage time here refers to the life of the machine defined in terms of whatever
quantity you use to measure system life. Units of lifetime can be quantities such as the distance
travelled (miles), fuel consumed (gallons), repetition cycles performed, or time since the start of
operation (days). Similarly time evolution can mean the evolution of a value with any such quantity.

Typically, you estimate the RUL of a system by developing a model that can perform the estimation
based on the time evolution or statistical properties of condition indicator values, such as:

• A model that fits the time evolution of a condition indicator and predicts how long it will be before
the condition indicator crosses some threshold value indicative of a fault condition.

• A model that compares the time evolution of a condition indicator to measured or simulated time
series from systems that ran to failure. Such a model can compute the most likely time-to-failure
of the current system.

Predictions from such models are statistical estimates with associated uncertainty. They provide a
probability distribution of the RUL of the test machine. The model you use can be:

• A dynamic model such as those you obtain using System Identification Toolbox™ commands. For
more information about such models, see “RUL Estimation Using Identified Models or State
Estimators” on page 5-6.

• Specialized Predictive Maintenance Toolbox models designed for computing RUL from different
types of measured system data. For more information about these models, see “RUL Estimation
Using RUL Estimator Models” on page 5-7.

Developing a model for RUL prediction is the next step in the algorithm-design process after
identifying promising condition indicators (see “Condition Indicators for Monitoring, Fault Detection,
and Prediction” on page 3-2). Because the model you develop uses the time evolution of condition
indicator values to predict RUL, this step is often iterative with the step of identifying condition
indicators. For more information, see “Feature Selection for Remaining Useful Life Prediction” on
page 5-2.
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See Also

More About
• “RUL Estimation Using Identified Models or State Estimators” on page 5-6
• “RUL Estimation Using RUL Estimator Models” on page 5-7
• “Feature Selection for Remaining Useful Life Prediction” on page 5-2
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RUL Estimation Using Identified Models or State Estimators
When you have an identified dynamic model that describes some aspect of system behavior, you can
use that model to forecast future behavior. You can identify such a dynamic model from system data.
Or, if you have system data that represents the operation of your machines with time or usage, you
can extract condition indicators from that data and track the behavior of the condition indicators with
time or usage. You can then identify a model that describes the behavior of the condition indicator,
and use that model to predict future values of a condition indicator. If you know, for example, that
your system needs repair when some condition indicator exceeds some threshold, you can identify a
model of the time evolution of that condition indicator. You can then propagate the model forward in
time to determine how long it will be before the condition indicator reaches the threshold value.

Some functions you can use for identification of dynamic models include:

• ssest — Estimate a state-space model from time-domain input-output data or frequency-response
data.

• arx, armax, ar — Estimate an autoregressive or moving-average (AR or ARMA) model from time-
series data.

• nlarx — Model nonlinear behavior using dynamic nonlinearity estimators such as wavelet
networks, tree-partitioning, and sigmoid networks.

You can use functions like forecast to predict the future behavior of the identified model. The
example “Condition Monitoring and Prognostics Using Vibration Signals” on page 5-54 uses this
approach to RUL prediction.

There are also recursive estimators that let you fit models in real-time as you collect and process the
data, such as recursiveARX and recursiveAR.

RUL estimation with state estimators such as unscentedKalmanFilter, extendedKalmanFilter,
and particleFilter works in a similar way. You perform state estimation on some time-varying
data, and predict future state values to determine the time until some state value associated with
failure occurs.

See Also

More About
• “Nonlinear State Estimation of a Degrading Battery System” on page 5-69
• “Condition Monitoring and Prognostics Using Vibration Signals” on page 5-54
• “Models for Predicting Remaining Useful Life” on page 5-4
• “Feature Selection for Remaining Useful Life Prediction” on page 5-2
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RUL Estimation Using RUL Estimator Models
Predictive Maintenance Toolbox includes some specialized models designed for computing RUL from
different types of measured system data. These models are useful when you have historical data and
information such as:

• Run-to-failure histories of machines similar to the one you want to diagnose
• A known threshold value of some condition indicator that indicates failure
• Data about how much time or how much usage it took for similar machines to reach failure

(lifetime)

RUL estimation models provide methods for training the model using historical data and using it for
performing prediction of the remaining useful life. The term lifetime here refers to the life of the
machine defined in terms of whatever quantity you use to measure system life. Similarly time
evolution can mean the evolution of a value with usage, distance traveled, number of cycles, or other
quantity that describes lifetime.

The general workflow for using RUL estimation models is:

1 Choose the best type of RUL estimation model for the data and system knowledge you have.
Create and configure the corresponding model object.

2 Train the estimation model using the historical data you have. To do so, use the fit command.
3 Using test data of the same type as your historical data, estimate the RUL of the test component.

To do so, use the predictRUL command. You can also use the test data recursively to update
some model types, such as degradation models, to help keep the predictions accurate. To do so,
use the update command.

For a basic example illustrating these steps, see “Update RUL Prediction as Data Arrives” on page 5-
11.

Choose an RUL Estimator
There are three families of RUL estimation models. Choose which family and which model to use
based on the data and system information you have available, as shown in the following illustration.
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Similarity Models
Similarity models base the RUL prediction of a test machine on known behavior of similar machines
from a historical database. Such models compare a trend in test data or condition-indicator values to
the same information extracted from other, similar systems.

Similarity models are useful when:

• You have run-to-failure data from similar systems (components). Run-to-failure data is data that
starts during healthy operation and ends when the machine is in a state close to failure or
maintenance.

• The run-to-failure data shows similar degradation behaviors. That is, the data changes in some
characteristic way as the system degrades.

Thus you can use similarity models when you can obtain degradation profiles from your data
ensemble. The degradation profiles represent the evolution of one or more condition indicators for
each machine in the ensemble (each component), as the machine transitions from a healthy state to a
faulty state.

Predictive Maintenance Toolbox includes three types of similarity models. All three types estimate
RUL by determining the similarity between the degradation history of a test data set and the
degradation history of data sets in the ensemble. For similarity models, predictRUL estimates the
RUL of the test component as the median life span of most similar components minus the current
lifetime value of the test component. The three models differ in the ways they define and quantify the
notion of similarity.

• Hashed-feature similarity model (hashSimilarityModel) — This model transforms historical
degradation data from each member of your ensemble into fixed-size, condensed, information such
as the mean, total power, maximum or minimum values, or other quantities.

When you call fit on a hashSimilarityModel object, the software computes these hashed
features and stores them in the similarity model. When you call predictRUL with data from a test
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component, the software computes the hashed features and compares the result to the values in
the table of historical hashed features.

The hashed-feature similarity model is useful when you have large amounts of degradation data,
because it reduces the amount of data storage necessary for prediction. However, its accuracy
depends on the accuracy of the hash function that the model uses. If you have identified good
condition indicators in your data, you can use the Method property of the
hashSimilarityModel object to specify the hash function to use those features.

• Pairwise similarity model (pairwiseSimilarityModel) — Pairwise similarity estimation
determines RUL by finding the components whose historical degradation paths are most
correlated to that of the test component. In other words, it computes the distance between
different time series, where distance is defined as correlation, dynamic time warping (dtw), or a
custom metric that you provide. By taking into account the degradation profile as it changes over
time, pairwise similarity estimation can give better results than the hash similarity model.

• Residual similarity model (residualSimilarityModel) — Residual-based estimation fits prior
data to model such as an ARMA model or a model that is linear or exponential in usage time. It
then computes the residuals between data predicted from the ensemble models and the data from
the test component. You can view the residual similarity model as a variation on the pairwise
similarity model, where the magnitudes of the residuals is the distance metric. The residual
similarity approach is useful when your knowledge of the system includes a form for the
degradation model.

For an example that uses a similarity model for RUL estimation, see “Similarity-Based Remaining
Useful Life Estimation” on page 5-15.

Degradation Models
Degradation models extrapolate past behavior to predict the future condition. This type of RUL
calculation fits a linear or exponential model to degradation profile of a condition indicator, given the
degradation profiles in your ensemble. It then uses the degradation profile of the test component to
statistically compute the remaining time until the indicator reaches some prescribed threshold. These
models are most useful when there is a known value of your condition indicator that indicates failure.
The two available degradation model types are:

• Linear degradation model (linearDegradationModel) — Describes the degradation behavior as
a linear stochastic process with an offset term. Linear degradation models are useful when your
system does not experience cumulative degradation.

• Exponential degradation model (exponentialDegradationModel — Describes the degradation
behavior as an exponential stochastic process with an offset term. Exponential degradation models
are useful when the test component experiences cumulative degradation.

After you create a degradation model object, initialize the model using historical data regarding the
health of an ensemble of similar components, such as multiple machines manufactured to the same
specifications. To do so, use fit. You can then predict the remaining useful life of similar components
using predictRUL.

Degradation models only work with a single condition indicator. However, you can use principal-
component analysis or other fusion techniques to generate a fused condition indicator that
incorporates information from more than one condition indicator. Whether you use a single indicator
or a fused indicator, look for an indicator that shows a clear increasing or decreasing trend, so that
the modeling and extrapolation are reliable.
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For an example that takes this approach and estimates RUL using a degradation model, see “Wind
Turbine High-Speed Bearing Prognosis” on page 5-37.

Survival Models
Survival analysis is a statistical method used to model time-to-event data. It is useful when you do not
have complete run-to-failure histories, but instead have:

• Only data about the life span of similar components. For example, you might know how many
miles each engine in your ensemble ran before needing maintenance, or how many hours of
operation each machine in your ensemble ran before failure. In this case, you use
reliabilitySurvivalModel. Given the historical information on failure times of a fleet of
similar components, this model estimates the probability distribution of the failure times. The
distribution is used to estimate the RUL of the test component.

• Both life spans and some other variable data (covariates) that correlates with the RUL. Covariates,
also called environmental variables or explanatory variables, comprise information such as the
component provider, regimes in which the component was used, or manufacturing batch. In this
case, use covariateSurvivalModel. This model is a proportional hazard survival model which
uses the life spans and covariates to compute the survival probability of a test component.

See Also
covariateSurvivalModel | exponentialDegradationModel | fit | hashSimilarityModel |
linearDegradationModel | pairwiseSimilarityModel | predictRUL |
reliabilitySurvivalModel | residualSimilarityModel

More About
• “Models for Predicting Remaining Useful Life” on page 5-4
• “Feature Selection for Remaining Useful Life Prediction” on page 5-2
• “Update RUL Prediction as Data Arrives” on page 5-11
• “Similarity-Based Remaining Useful Life Estimation” on page 5-15
• “Wind Turbine High-Speed Bearing Prognosis” on page 5-37
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Update RUL Prediction as Data Arrives
This example shows how to update an RUL prediction as new data arrives from a machine under test.
In the example, you use an ensemble of training data to train an RUL model. You then loop through a
sequence of test data from a single machine, updating the RUL prediction for each new data point.
The example shows the evolution of the RUL prediction as new data becomes available.

This example uses exponentialDegradationModel. For degradation RUL models, when a new
data point becomes available, you must first update the degradation model before predicting a new
RUL value. For other RUL model types, skip this update step.

Data for Training and Prediction

Load the data for this example, which consists of two variables, TestData and TrainingData.

load UpdateRULExampleData

TestData is a table containing the value of some condition indicator, Condition, recorded every
hour, as the first few entries show.

head(TestData,5)

ans=5×2 table
    Time    Condition
    ____    _________

     1        1.0552 
     2        1.2013 
     3       0.79781 
     4          1.09 
     5        1.0324 

TrainingData is a cell array of tables having the same variables as TestData. Each cell in
TrainingData represents the evolution to failure of the condition indicator Condition over the
lifetime of one machine in the ensemble.

Train Prediction Model

Use TrainingData to train an exponentialDegradationModel model for RUL prediction. The
fit command estimates a prior for the model's parameters based on the historical records in
TrainingData. The Prior property of the trained model contains the model parameters Theta,
Beta, and Rho. (For details of these model parameters, see exponentialDegradationModel.)

mdl = exponentialDegradationModel('LifeTimeUnit',"hours");
fit(mdl,TrainingData,"Time","Condition")
mdl.Prior

ans = struct with fields:
            Theta: 0.6389
    ThetaVariance: 0.0661
             Beta: 0.0583
     BetaVariance: 1.8383e-04
              Rho: -0.3129

Degradation models are most reliable for degradation tracking after an initial slope emerges in the
condition-indicator measurements. Set the slope detection level at 0.1 to tell the model not to make
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RUL predictions until that slope is reached. (When you know in advance that the measurements are
for a component whose degradation has already started, you can disable slope detection by setting
mdl.SlopeDetectionLevel = [].)

mdl.SlopeDetectionLevel = 0.1;

Predict RUL at Each Time Step

Define a threshold condition indicator value that indicates the end of life of a machine. The RUL is the
predicted time left before the condition indicator for the test machine reaches this threshold value.

threshold = 400;

For RUL prediction, assume that TestData begins at time t = 1 hour, and a new data sample
becomes available every hour. In general, you can predict a new RUL value with each new data point.
For the degradation model of this example, loop through TestData and update the model with each
new data point using the update command. Then, check whether the model detects a sufficient
change in slope for reliable RUL prediction. If it does, predict a new RUL value using the
predictRUL command. To observe the evolution of the estimation, store the estimated RUL values
and the associated confidence intervals in the vectors EstRUL and CI, respectively. Similarly, store
the model parameters in the array ModelParameters.

N = height(TestData);
EstRUL = hours(zeros(N,1));   
CI = hours(zeros(N,2));       
ModelParameters = zeros(N,3);
for t = 1:N
   CurrentDataSample = TestData(t,:);    
   update(mdl,CurrentDataSample)
   ModelParameters(t,:) = [mdl.Theta mdl.Beta mdl.Rho];
   % Compute RUL only if the data indicates a change in slope.
   if ~isempty(mdl.SlopeDetectionInstant)
      [EstRUL(t),CI(t,:)] = predictRUL(mdl,CurrentDataSample,threshold);
   end
end

Plot the trajectories of the estimated model-parameter values. The values change rapidly after a slope
is detected in the degradation data. They tend to converge as more data points become available.

Time = hours(1:N)';
tStart = mdl.SlopeDetectionInstant; % slope detection time instant
plot(Time,ModelParameters);
hold on
plot([tStart, tStart],[-1,2],'k--')
legend({'\theta(t)','\beta(t)','\rho(t)','Slope detection instant'},'Location','best')
hold off
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Plot the predicted RUL to observe its evolution as more degradation data becomes available. There is
no new estimated RUL value until a slope is detected in the degradation data. After that, the
predicted RUL decreases over time, as expected. predictRUL computes a statistical distribution of
RUL values. The confidence bounds on the predicted RUL become narrower over time.

plot(Time,EstRUL,'b.-',Time,CI,'c',tStart,EstRUL(hours(tStart)),'r*')
title('Estimated RUL at Time t')
xlabel('t')
ylabel('Estimated RUL')
legend({'Predicted RUL','Confidence bound','Confidence bound','Slope detection instant'})
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See Also
exponentialDegradationModel | predictRUL | update

More About
• “RUL Estimation Using RUL Estimator Models” on page 5-7
• “Wind Turbine High-Speed Bearing Prognosis” on page 5-37
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Similarity-Based Remaining Useful Life Estimation
This example shows how to build a complete Remaining Useful Life (RUL) estimation workflow
including the steps for preprocessing, selecting trendable features, constructing a health indicator by
sensor fusion, training similarity RUL estimators, and validating prognostics performance. The
example uses the training data from the PHM2008 challenge dataset from https://ti.arc.nasa.gov/
tech/dash/groups/pcoe/prognostic-data-repository/ [1].

Data Preparation

Since the dataset is small it is feasible to load the whole degradation data into memory. Download and
unzip the data set from https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/ to
the current directory. Use the helperLoadData helper function to load and convert the training text
file to a cell array of timetables. The training data contains 218 run-to-failure simulations. This group
of measurements is called an "ensemble".

degradationData = helperLoadData('train.txt');
degradationData(1:5)

ans = 5×1 cell array
    {223×26 table}
    {164×26 table}
    {150×26 table}
    {159×26 table}
    {357×26 table}

Each ensemble member is a table with 26 columns. The columns contain data for the machine ID,
time stamp, 3 operating conditions and 21 sensor measurements.

head(degradationData{1})

ans=8×26 table
    id    time    op_setting_1    op_setting_2    op_setting_3    sensor_1    sensor_2    sensor_3    sensor_4    sensor_5    sensor_6    sensor_7    sensor_8    sensor_9    sensor_10    sensor_11    sensor_12    sensor_13    sensor_14    sensor_15    sensor_16    sensor_17    sensor_18    sensor_19    sensor_20    sensor_21
    __    ____    ____________    ____________    ____________    ________    ________    ________    ________    ________    ________    ________    ________    ________    _________    _________    _________    _________    _________    _________    _________    _________    _________    _________    _________    _________

    1      1         10.005          0.2501            20          489.05      604.13      1499.5        1310      10.52       15.49       394.88      2318.9      8770.2       1.26          45.4       372.15       2388.1       8120.8       8.6216        0.03          368         2319          100         28.58       17.174  
    1      2         0.0015          0.0003           100          518.67      642.13      1584.5        1404      14.62       21.61       553.67        2388      9045.8        1.3         47.29       521.81       2388.2       8132.9       8.3907        0.03          391         2388          100         38.99       23.362  
    1      3         34.999          0.8401            60          449.44      555.42      1368.2      1122.5       5.48           8       194.93      2222.9      8343.9       1.02         41.92       183.26       2387.9       8063.8       9.3557        0.02          334         2223          100         14.83       8.8555  
    1      4         20.003          0.7005             0          491.19      607.03      1488.4      1249.2       9.35       13.65       334.82      2323.8      8721.5       1.08         44.26       314.84       2388.1       8052.3       9.2231        0.02          364         2324          100         24.42       14.783  
    1      5         42.004          0.8405            40             445      549.52      1354.5      1124.3       3.91        5.71       138.24      2211.8      8314.6       1.02         41.79       130.44       2387.9       8083.7       9.2986        0.02          330         2212          100         10.99       6.4025  
    1      6         20.003          0.7017             0          491.19      607.37      1480.5      1258.9       9.35       13.65       334.51      2323.9      8711.4       1.08          44.4       315.36       2388.1       8053.2       9.2276        0.02          364         2324          100         24.44       14.702  
    1      7             42            0.84            40             445      549.57      1354.4      1131.4       3.91        5.71       139.11      2211.8      8316.9       1.02         42.09       130.16       2387.9         8082       9.3753        0.02          331         2212          100         10.53       6.4254  
    1      8         0.0011               0           100          518.67      642.08      1589.5      1407.6      14.62       21.61       553.48      2388.1      9050.4        1.3          47.5       521.74         2388       8133.3       8.4339        0.03          391         2388          100         38.98       23.234  

Split the degradation data into a training data set and a validation data set for later performance
evaluation.

rng('default')  % To make sure the results are repeatable
numEnsemble = length(degradationData);
numFold = 5;
cv = cvpartition(numEnsemble, 'KFold', numFold);
trainData = degradationData(training(cv, 1));
validationData = degradationData(test(cv, 1));

Specify groups of variables of interest.
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varNames = string(degradationData{1}.Properties.VariableNames);
timeVariable = varNames{2};
conditionVariables = varNames(3:5);
dataVariables = varNames(6:26);

Visualize a sample of the ensemble data.

nsample = 10;
figure
helperPlotEnsemble(trainData, timeVariable, ...
    [conditionVariables(1:2) dataVariables(1:2)], nsample)

Working Regime Clustering

As shown in the previous section, there is no clear trend showing the degradation process in each
run-to-failure measurement. In this and the next section, the operating conditions will be used to
extract clearer degradation trends from sensor signals.

Notice that each ensemble member contains 3 operating conditions: "op_setting_1", "op_setting_2",
and "op_setting_3". First, let's extract the table from each cell and concatenate them into a single
table.

trainDataUnwrap = vertcat(trainData{:});
opConditionUnwrap = trainDataUnwrap(:, cellstr(conditionVariables));

Visualize all operating points on a 3D scatter plot. It clearly shows 6 regimes and the points in each
regime are in very close proximity.
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figure
helperPlotClusters(opConditionUnwrap)

Let's use clustering techniques to locate the 6 clusters automatically. Here, the K-means algorithm is
used. K-means is one of the most popular clustering algorithms, but it can result in local optima. It is
a good practice to repeat the K-means clustering algorithm several times with different initial
conditions and pick the results with the lowest cost. In this case, the algorithm runs 5 times and the
results are identical.

opts = statset('Display', 'final');
[clusterIndex, centers] = kmeans(table2array(opConditionUnwrap), 6, ...
    'Distance', 'sqeuclidean', 'Replicates', 5, 'Options', opts);

Replicate 1, 1 iterations, total sum of distances = 0.279547.
Replicate 2, 1 iterations, total sum of distances = 0.279547.
Replicate 3, 1 iterations, total sum of distances = 0.279547.
Replicate 4, 1 iterations, total sum of distances = 0.279547.
Replicate 5, 1 iterations, total sum of distances = 0.279547.
Best total sum of distances = 0.279547

Visualize the clustering results and the identified cluster centroids.

figure
helperPlotClusters(opConditionUnwrap, clusterIndex, centers)
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As the plot illustrates, the clustering algorithm successfully finds the 6 working regimes.

Working Regime Normalization

Let's perform a normalization on measurements grouped by different working regimes. First,
compute the mean and standard deviation of each sensor measurement grouped by the working
regimes identified in the last section.

centerstats = struct('Mean', table(), 'SD', table());
for v = dataVariables
    centerstats.Mean.(char(v)) = splitapply(@mean, trainDataUnwrap.(char(v)), clusterIndex);
    centerstats.SD.(char(v))   = splitapply(@std,  trainDataUnwrap.(char(v)), clusterIndex);
end
centerstats.Mean

ans=6×21 table
    sensor_1    sensor_2    sensor_3    sensor_4    sensor_5    sensor_6    sensor_7    sensor_8    sensor_9    sensor_10    sensor_11    sensor_12    sensor_13    sensor_14    sensor_15    sensor_16    sensor_17    sensor_18    sensor_19    sensor_20    sensor_21
    ________    ________    ________    ________    ________    ________    ________    ________    ________    _________    _________    _________    _________    _________    _________    _________    _________    _________    _________    _________    _________

     489.05      604.92      1502.1      1311.4      10.52       15.493      394.32        2319      8784.1         1.26      45.496       371.44       2388.2       8133.9       8.6653          0.03      369.74        2319           100       28.525       17.115  
     518.67      642.71      1590.7      1409.4      14.62        21.61       553.3      2388.1      9062.3          1.3      47.557       521.36       2388.1       8140.9       8.4442          0.03      393.27        2388           100       38.809       23.285  
     462.54      536.87      1262.8      1050.6       7.05       9.0275       175.4      1915.4      8014.9      0.93989      36.808       164.56       2028.3         7878       10.916          0.02      307.39        1915         84.93       14.262       8.5552  
        445      549.72      1354.7      1128.2       3.91       5.7158      138.62        2212        8327       1.0202      42.163       130.53         2388       8088.4       9.3775          0.02      331.12        2212           100       10.584       6.3515  
     491.19      607.59        1486      1253.6       9.35       13.657      334.46        2324      8729.1       1.0777      44.466       314.85       2388.2         8065       9.2347      0.022299      365.45        2324           100       24.447        14.67  
     449.44      555.82      1366.9      1131.9       5.48       8.0003      194.43        2223      8355.2       1.0203      41.995       183.01       2388.1       8071.1       9.3344          0.02      334.29        2223           100       14.827       8.8966  

centerstats.SD
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ans=6×21 table
     sensor_1     sensor_2    sensor_3    sensor_4     sensor_5     sensor_6     sensor_7    sensor_8    sensor_9    sensor_10     sensor_11    sensor_12    sensor_13    sensor_14    sensor_15    sensor_16     sensor_17    sensor_18    sensor_19     sensor_20    sensor_21
    __________    ________    ________    ________    __________    _________    ________    ________    ________    __________    _________    _________    _________    _________    _________    __________    _________    _________    __________    _________    _________

    1.4553e-11    0.47617      5.8555      8.3464     1.1618e-12    0.0047272    0.65536     0.094487     18.057       1.51e-13     0.25089      0.52838     0.096183      16.012      0.037598     9.9929e-16     1.4723          0                 0     0.14522     0.086753 
     4.059e-11    0.48566      5.9258      8.8223     3.7307e-14    0.0011406    0.86236     0.068654     20.061     1.2103e-13     0.25937      0.71239     0.069276      17.212      0.036504     9.9929e-16     1.5046          0                 0     0.17565      0.10515 
    2.7685e-11    0.35468      5.2678      6.9664      2.043e-14    0.0043301    0.45074       0.2743     14.741      0.0010469     0.21539      0.33985      0.28932      13.624      0.044142     8.6744e-16     1.3083          0        5.9833e-12     0.11212      0.06722 
             0    0.44169      5.6853      7.5741     1.9763e-13    0.0049401    0.44198      0.30713     18.389      0.0014951     0.23584       0.3432      0.33144      16.917      0.037135      2.231e-15     1.4174          0                 0     0.10778     0.063991 
    4.4456e-11    0.46992      5.7664      7.8679     8.9892e-13    0.0046633    0.59984      0.13032     17.983      0.0042388      0.2362      0.49055      0.13285      15.792      0.038156      0.0042084     1.4428          0                 0     0.13352     0.079731 
    4.3489e-11    0.44341      5.7224      7.4842     3.7485e-13    0.0017642     0.4734      0.28889     17.608      0.0017978     0.23242      0.38243         0.31       15.91      0.038624     8.5009e-16     1.3974          0                 0     0.11311     0.069348 

The statistics in each regime can be used to normalize the training data. For each ensemble member,
extract the operating points of each row, compute its distance to each cluster centers and find the
nearest cluster center. Then, for each sensor measurement, subtract the mean and divide it by the
standard deviation of that cluster. If the standard deviation is close to 0, set the normalized sensor
measurement to 0 because a nearly constant sensor measurement is not useful for remaining useful
life estimation. Refer to the last section, "Helper Functions", for more details on regimeNormalization
function.

trainDataNormalized = cellfun(@(data) regimeNormalization(data, centers, centerstats), ...
    trainData, 'UniformOutput', false);

Visualize the data normalized by working regime. Degradation trends for some sensor measurements
are now revealed after normalization.

figure
helperPlotEnsemble(trainDataNormalized, timeVariable, dataVariables(1:4), nsample)
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Trendability Analysis

Now select the most trendable sensor measurements to construct a health indicator for prediction.
For each sensor measurement, a linear degradation model is estimated and the slopes of the signals
are ranked.

numSensors = length(dataVariables);
signalSlope = zeros(numSensors, 1);
warn = warning('off');
for ct = 1:numSensors
    tmp = cellfun(@(tbl) tbl(:, cellstr(dataVariables(ct))), trainDataNormalized, 'UniformOutput', false);
    mdl = linearDegradationModel(); % create model
    fit(mdl, tmp); % train mode
    signalSlope(ct) = mdl.Theta;
end
warning(warn);

Sort the signal slopes and select 8 sensors with the largest slopes.

[~, idx] = sort(abs(signalSlope), 'descend');
sensorTrended = sort(idx(1:8))

sensorTrended = 8×1

     2
     3
     4
     7
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    11
    12
    15
    17

Visualize the selected trendable sensor measurements.

figure
helperPlotEnsemble(trainDataNormalized, timeVariable, dataVariables(sensorTrended(3:6)), nsample)

Notice that some of the most trendable signals show positive trends, while others show negative
trends.

Construct Health Indicator

This section focuses on fusing the sensor measurements into a single health indicator, with which a
similarity-based model is trained.

All the run-to-failure data is assumed to start with a healthy condition. The health condition at the
beginning is assigned a value of 1 and the health condition at failure is assigned a value of 0. The
health condition is assumed to be linearly degrading from 1 to 0 over time. This linear degradation is
used to help fuse the sensor values. More sophisticated sensor fusion techniques are described in the
literature [2-5].

for j=1:numel(trainDataNormalized)
    data = trainDataNormalized{j};
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    rul = max(data.time)-data.time;
    data.health_condition = rul / max(rul);
    trainDataNormalized{j} = data;
end

Visualize the health condition.

figure
helperPlotEnsemble(trainDataNormalized, timeVariable, "health_condition", nsample)

The health condition of all ensemble members change from 1 to 0 with varying degrading speeds.

Now fit a linear regression model of Health Condition with the most trended sensor measurements as
regressors:

Health Condition ~ 1 + Sensor2 + Sensor3 + Sensor4 + Sensor7 + Sensor11 + Sensor12 +
Sensor15 + Sensor17

trainDataNormalizedUnwrap = vertcat(trainDataNormalized{:});

sensorToFuse = dataVariables(sensorTrended);
X = trainDataNormalizedUnwrap{:, cellstr(sensorToFuse)};
y = trainDataNormalizedUnwrap.health_condition;
regModel = fitlm(X,y);
bias = regModel.Coefficients.Estimate(1)

bias = 0.5000

5 Predict Remaining Useful Life

5-22



weights = regModel.Coefficients.Estimate(2:end)

weights = 8×1

   -0.0308
   -0.0308
   -0.0536
    0.0033
   -0.0639
    0.0051
   -0.0408
   -0.0382

Construct a single health indicator by multiplying the sensor measurements with their associated
weights .

trainDataFused = cellfun(@(data) degradationSensorFusion(data, sensorToFuse, weights), trainDataNormalized, ...
    'UniformOutput', false);

Visualize the fused health indicator for training data.

figure
helperPlotEnsemble(trainDataFused, [], 1, nsample)
xlabel('Time')
ylabel('Health Indicator')
title('Training Data')
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The data from multiple sensors are fused into a single health indicator. The health indicator is
smoothed by a moving average filter. See helper function "degradationSensorFusion" in the last
section for more details.

Apply same operation to validation data

Repeat the regime normalization and sensor fusion process with the validation data set.

validationDataNormalized = cellfun(@(data) regimeNormalization(data, centers, centerstats), ...
    validationData, 'UniformOutput', false);
validationDataFused = cellfun(@(data) degradationSensorFusion(data, sensorToFuse, weights), ...
    validationDataNormalized, 'UniformOutput', false);

Visualize the health indicator for validation data.

figure
helperPlotEnsemble(validationDataFused, [], 1, nsample)
xlabel('Time')
ylabel('Health Indicator')
title('Validation Data')

Build Similarity RUL Model

Now build a residual-based similarity RUL model using the training data. In this setting, the model
tries to fit each fused data with a 2nd order polynomial.

The distance between data i and data j is computed by the 1-norm of the residual
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d(i, j) = y j− y j, i 1

where y j is the health indicator of machine j, y j, i is the estimated health indicator of machine j using
the 2nd order polynomial model identified in machine i.

The similarity score is computed by the following formula

score(i, j) = exp( − d(i, j)2)

Given one ensemble member in the validation data set, the model will find the nearest 50 ensemble
members in the training data set, fit a probability distribution based on the 50 ensemble members,
and use the median of the distribution as an estimate of RUL.

mdl = residualSimilarityModel(...
    'Method', 'poly2',...
    'Distance', 'absolute',...
    'NumNearestNeighbors', 50,...
    'Standardize', 1);

fit(mdl, trainDataFused);

Performance Evaluation

To evaluate the similarity RUL model, use 50%, 70% and 90% of a sample validation data to predict
its RUL.

breakpoint = [0.5, 0.7, 0.9];
validationDataTmp = validationDataFused{3}; % use one validation data for illustration

Use the validation data before the first breakpoint, which is 50% of the lifetime.

bpidx = 1;
validationDataTmp50 = validationDataTmp(1:ceil(end*breakpoint(bpidx)),:);
trueRUL = length(validationDataTmp) - length(validationDataTmp50);
[estRUL, ciRUL, pdfRUL] = predictRUL(mdl, validationDataTmp50);

Visualize the validation data truncated at 50% and its nearest neighbors.

figure
compare(mdl, validationDataTmp50);

 Similarity-Based Remaining Useful Life Estimation

5-25



Visualize the estimated RUL compared to the true RUL and the probability distribution of the
estimated RUL.

figure
helperPlotRULDistribution(trueRUL, estRUL, pdfRUL, ciRUL)
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There is a relatively large error between the estimated RUL and the true RUL when the machine is in
an intermediate health stage. In this example, the most similar 10 curves are close at the beginning,
but bifurcate when they approach the failure state, resulting in roughly two modes in the RUL
distribution.

Use the validation data before the second breakpoint, which is 70% of the lifetime.

bpidx = 2;
validationDataTmp70 = validationDataTmp(1:ceil(end*breakpoint(bpidx)), :);
trueRUL = length(validationDataTmp) - length(validationDataTmp70);
[estRUL,ciRUL,pdfRUL] = predictRUL(mdl, validationDataTmp70);

figure
compare(mdl, validationDataTmp70);
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figure
helperPlotRULDistribution(trueRUL, estRUL, pdfRUL, ciRUL)
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When more data is observed, the RUL estimation is enhanced.

Use the validation data before the third breakpoint, which is 90% of the lifetime.

bpidx = 3;
validationDataTmp90 = validationDataTmp(1:ceil(end*breakpoint(bpidx)), :);
trueRUL = length(validationDataTmp) - length(validationDataTmp90);
[estRUL,ciRUL,pdfRUL] = predictRUL(mdl, validationDataTmp90);

figure
compare(mdl, validationDataTmp90);
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figure
helperPlotRULDistribution(trueRUL, estRUL, pdfRUL, ciRUL)
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When the machine is close to failure, the RUL estimation is even more enhanced in this example.

Now repeat the same evaluation procedure for the whole validation data set and compute the error
between estimated RUL and true RUL for each breakpoint.

numValidation = length(validationDataFused);
numBreakpoint = length(breakpoint);
error = zeros(numValidation, numBreakpoint);

for dataIdx = 1:numValidation
    tmpData = validationDataFused{dataIdx};
    for bpidx = 1:numBreakpoint
        tmpDataTest = tmpData(1:ceil(end*breakpoint(bpidx)), :);
        trueRUL = length(tmpData) - length(tmpDataTest);
        [estRUL, ~, ~] = predictRUL(mdl, tmpDataTest);
        error(dataIdx, bpidx) = estRUL - trueRUL;
    end
end

Visualize the histogram of the error for each breakpoint together with its probability distribution.

[pdf50, x50] = ksdensity(error(:, 1));
[pdf70, x70] = ksdensity(error(:, 2));
[pdf90, x90] = ksdensity(error(:, 3));

figure
ax(1) = subplot(3,1,1);
hold on
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histogram(error(:, 1), 'BinWidth', 5, 'Normalization', 'pdf')
plot(x50, pdf50)
hold off
xlabel('Prediction Error')
title('RUL Prediction Error using first 50% of each validation ensemble member')

ax(2) = subplot(3,1,2);
hold on
histogram(error(:, 2), 'BinWidth', 5, 'Normalization', 'pdf')
plot(x70, pdf70)
hold off
xlabel('Prediction Error')
title('RUL Prediction Error using first 70% of each validation ensemble member')

ax(3) = subplot(3,1,3);
hold on
histogram(error(:, 3), 'BinWidth', 5, 'Normalization', 'pdf')
plot(x90, pdf90)
hold off
xlabel('Prediction Error')
title('RUL Prediction Error using first 90% of each validation ensemble member')
linkaxes(ax)

Plot the prediction error in a box plot to visualize the median, 25-75 quantile and outliers.

figure
boxplot(error, 'Labels', {'50%', '70%', '90%'})
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ylabel('Prediction Error')
title('Prediction error using different percentages of each validation ensemble member')

Compute and visualize the mean and standard deviation of the prediction error.

errorMean = mean(error)

errorMean = 1×3

   -5.8944    3.1359    3.3555

errorMedian = median(error)

errorMedian = 1×3

   -4.8538    5.3763    3.6580

errorSD = std(error)

errorSD = 1×3

   26.4916   20.0720   18.0313

figure
errorbar([50 70 90], errorMean, errorSD, '-o', 'MarkerEdgeColor','r')
xlim([40, 100])
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xlabel('Percentage of validation data used for RUL prediction')
ylabel('Prediction Error')
legend('Mean Prediction Error with 1 Standard Deviation Eror bar', 'Location', 'south')

It is shown that the error becomes more concentrated around 0 (less outliers) as more data is
observed.
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Helper Functions

function data = regimeNormalization(data, centers, centerstats)
% Perform normalization for each observation (row) of the data
% according to the cluster the observation belongs to.
conditionIdx = 3:5;
dataIdx = 6:26;

% Perform row-wise operation
data{:, dataIdx} = table2array(...
    rowfun(@(row) localNormalize(row, conditionIdx, dataIdx, centers, centerstats), ...
    data, 'SeparateInputs', false));
end

function rowNormalized = localNormalize(row, conditionIdx, dataIdx, centers, centerstats)
% Normalization operation for each row.

% Get the operating points and sensor measurements
ops = row(1, conditionIdx);
sensor = row(1, dataIdx);

% Find which cluster center is the closest
dist = sum((centers - ops).^2, 2);
[~, idx] = min(dist);

% Normalize the sensor measurements by the mean and standard deviation of the cluster.
% Reassign NaN and Inf to 0.
rowNormalized = (sensor - centerstats.Mean{idx, :}) ./ centerstats.SD{idx, :};
rowNormalized(isnan(rowNormalized) | isinf(rowNormalized)) = 0;
end

function dataFused = degradationSensorFusion(data, sensorToFuse, weights)
% Combine measurements from different sensors according 
% to the weights, smooth the fused data and offset the data
% so that all the data start from 1

% Fuse the data according to weights
dataToFuse = data{:, cellstr(sensorToFuse)};
dataFusedRaw = dataToFuse*weights;

% Smooth the fused data with moving mean
stepBackward = 10;
stepForward = 10;
dataFused = movmean(dataFusedRaw, [stepBackward stepForward]);

% Offset the data to 1
dataFused = dataFused + 1 - dataFused(1);
end

See Also
residualSimilarityModel

More About
• “Feature Selection for Remaining Useful Life Prediction” on page 5-2
• “RUL Estimation Using RUL Estimator Models” on page 5-7
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• “Wind Turbine High-Speed Bearing Prognosis” on page 5-37
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Wind Turbine High-Speed Bearing Prognosis
This example shows how to build an exponential degradation model to predict the Remaining Useful
Life (RUL) of a wind turbine bearing in real time. The exponential degradation model predicts the
RUL based on its parameter priors and the latest measurements (historical run-to-failure data can
help estimate the model parameters priors, but they are not required). The model is able to detect the
significant degradation trend in real time and updates its parameter priors when a new observation
becomes available. The example follows a typical prognosis workflow: data import and exploration,
feature extraction and postprocessing, feature importance ranking and fusion, model fitting and
prediction, and performance analysis.

Dataset

The dataset is collected from a 2MW wind turbine high-speed shaft driven by a 20-tooth pinion gear
[1]. A vibration signal of 6 seconds was acquired each day for 50 consecutive days (there are 2
measurements on March 17, which are treated as two days in this example). An inner race fault
developed and caused the failure of the bearing across the 50-day period.

A compact version of the dataset is available in the toolbox. To use the compact dataset, copy the
dataset to the current folder and enable its write permission.

copyfile(...
    fullfile(matlabroot, 'toolbox', 'predmaint', ...
    'predmaintdemos', 'windTurbineHighSpeedBearingPrognosis'), ...
    'WindTurbineHighSpeedBearingPrognosis-Data-master')
fileattrib(fullfile('WindTurbineHighSpeedBearingPrognosis-Data-master', '*.mat'), '+w')

The measurement time step for the compact dataset is 5 days.

timeUnit = '\times 5 day';

For the full dataset, go to this link https://github.com/mathworks/
WindTurbineHighSpeedBearingPrognosis-Data, download the entire repository as a zip file and save
it in the same directory as this live script. Unzip the file using this command. The measurement time
step for the full dataset is 1 day.

if exist('WindTurbineHighSpeedBearingPrognosis-Data-master.zip', 'file')
    unzip('WindTurbineHighSpeedBearingPrognosis-Data-master.zip')
    timeUnit = 'day';
end

The results in this example are generated from the full dataset. It is highly recommended to
download the full dataset to run this example. Results generated from the compact dataset might not
be meaningful.

Data Import

Create a fileEnsembleDatastore of the wind turbine data. The data contains a vibration signal
and a tachometer signal. The fileEnsembleDatastore will parse the file name and extract the date
information as IndependentVariables. See the helper functions in the supporting files associated
with this example for more details.

hsbearing = fileEnsembleDatastore(...
    fullfile('.', 'WindTurbineHighSpeedBearingPrognosis-Data-master'), ...
    '.mat');
hsbearing.DataVariables = ["vibration", "tach"];

 Wind Turbine High-Speed Bearing Prognosis

5-37

https://github.com/mathworks/WindTurbineHighSpeedBearingPrognosis-Data
https://github.com/mathworks/WindTurbineHighSpeedBearingPrognosis-Data


hsbearing.IndependentVariables = "Date";
hsbearing.SelectedVariables = ["Date", "vibration", "tach"];
hsbearing.ReadFcn = @helperReadData;
hsbearing.WriteToMemberFcn = @helperWriteToHSBearing;
tall(hsbearing)

ans =

  M×3 tall table

            Date                vibration             tach      
    ____________________    _________________    _______________

    07-Mar-2013 01:57:46    [585936×1 double]    [2446×1 double]
    08-Mar-2013 02:34:21    [585936×1 double]    [2411×1 double]
    09-Mar-2013 02:33:43    [585936×1 double]    [2465×1 double]
    10-Mar-2013 03:01:02    [585936×1 double]    [2461×1 double]
    11-Mar-2013 03:00:24    [585936×1 double]    [2506×1 double]
    12-Mar-2013 06:17:10    [585936×1 double]    [2447×1 double]
    13-Mar-2013 06:34:04    [585936×1 double]    [2438×1 double]
    14-Mar-2013 06:50:41    [585936×1 double]    [2390×1 double]
             :                      :                   :
             :                      :                   :

Sample rate of vibration signal is 97656 Hz.

fs = 97656; % Hz

Data Exploration

This section explores the data in both time domain and frequency domain and seeks inspiration of
what features to extract for prognosis purposes.

First visualize the vibration signals in the time domain. In this dataset, there are 50 vibration signals
of 6 seconds measured in 50 consecutive days. Now plot the 50 vibration signals one after each other.

reset(hsbearing)
tstart = 0;
figure
hold on
while hasdata(hsbearing)
    data = read(hsbearing);
    v = data.vibration{1};
    t = tstart + (1:length(v))/fs;
    % Downsample the signal to reduce memory usage
    plot(t(1:10:end), v(1:10:end))
    tstart = t(end);
end
hold off
xlabel('Time (s), 6 second per day, 50 days in total')
ylabel('Acceleration (g)')
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The vibration signals in time domain reveals an increasing trend of the signal impulsiveness.
Indicators quantifying the impulsiveness of the signal, such as kurtosis, peak-to-peak value, crest
factors etc., are potential prognostic features for this wind turbine bearing dataset [2].

On the other hand, spectral kurtosis is considered powerful tool for wind turbine prognosis in
frequency domain [3]. To visualize the spectral kurtosis changes along time, plot the spectral kurtosis
values as a function of frequency and the measurement day.

hsbearing.DataVariables = ["vibration", "tach", "SpectralKurtosis"];
colors = parula(50);
figure
hold on
reset(hsbearing)
day = 1;
while hasdata(hsbearing)
    data = read(hsbearing);
    data2add = table;
    
    % Get vibration signal and measurement date
    v = data.vibration{1};
    
    % Compute spectral kurtosis with window size = 128
    wc = 128;
    [SK, F] = pkurtosis(v, fs, wc);
    data2add.SpectralKurtosis = {table(F, SK)};
    
    % Plot the spectral kurtosis
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    plot3(F, day*ones(size(F)), SK, 'Color', colors(day, :))
    
    % Write spectral kurtosis values
    writeToLastMemberRead(hsbearing, data2add);
    
    % Increment the number of days
    day = day + 1;
end
hold off
xlabel('Frequency (Hz)')
ylabel('Time (day)')
zlabel('Spectral Kurtosis')
grid on
view(-45, 30)
cbar = colorbar;
ylabel(cbar, 'Fault Severity (0 - healthy, 1 - faulty)')

Fault Severity indicated in colorbar is the measurement date normalized into 0 to 1 scale. It is
observed that the spectral kurtosis value around 10 kHz gradually increases as the machine condition
degrades. Statistical features of the spectral kurtosis, such as mean, standard deviation etc., will be
potential indicators of the bearing degradation [3].

Feature Extraction

Based on the analysis in the previous section, a collection of statistical features derived from time-
domain signal and spectral kurtosis are going to be extracted. More mathematical details about the
features are provided in [2-3].
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First, pre-assign the feature names in DataVariables before writing them into the
fileEnsembleDatastore.

hsbearing.DataVariables = [hsbearing.DataVariables; ...
    "Mean"; "Std"; "Skewness"; "Kurtosis"; "Peak2Peak"; ...
    "RMS"; "CrestFactor"; "ShapeFactor"; "ImpulseFactor"; "MarginFactor"; "Energy"; ...
    "SKMean"; "SKStd"; "SKSkewness"; "SKKurtosis"];

Compute feature values for each ensemble member.

hsbearing.SelectedVariables = ["vibration", "SpectralKurtosis"];
reset(hsbearing)
while hasdata(hsbearing)
    data = read(hsbearing);
    v = data.vibration{1};
    SK = data.SpectralKurtosis{1}.SK;
    features = table;
    
    % Time Domain Features
    features.Mean = mean(v);
    features.Std = std(v);
    features.Skewness = skewness(v);
    features.Kurtosis = kurtosis(v);
    features.Peak2Peak = peak2peak(v);
    features.RMS = rms(v);
    features.CrestFactor = max(v)/features.RMS;
    features.ShapeFactor = features.RMS/mean(abs(v));
    features.ImpulseFactor = max(v)/mean(abs(v));
    features.MarginFactor = max(v)/mean(abs(v))^2;
    features.Energy = sum(v.^2);
    
    % Spectral Kurtosis related features
    features.SKMean = mean(SK);
    features.SKStd = std(SK);
    features.SKSkewness = skewness(SK);
    features.SKKurtosis = kurtosis(SK);
    
    % write the derived features to the corresponding file
    writeToLastMemberRead(hsbearing, features);
end

Select the independent variable Date and all the extracted features to construct the feature table.

hsbearing.SelectedVariables = ["Date", "Mean", "Std", "Skewness", "Kurtosis", "Peak2Peak", ...
    "RMS", "CrestFactor", "ShapeFactor", "ImpulseFactor", "MarginFactor", "Energy", ...
    "SKMean", "SKStd", "SKSkewness", "SKKurtosis"];

Since the feature table is small enough to fit in memory (50 by 15), gather the table before
processing. For big data, it is recommended to perform operations in tall format until you are
confident that the output is small enough to fit in memory.

featureTable = gather(tall(hsbearing));

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 sec
Evaluation completed in 1 sec

Convert the table to timetable so that the time information is always associated with the feature
values.
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featureTable = table2timetable(featureTable)

featureTable=50×15 timetable
            Date             Mean       Std       Skewness      Kurtosis    Peak2Peak     RMS      CrestFactor    ShapeFactor    ImpulseFactor    MarginFactor      Energy        SKMean       SKStd      SKSkewness    SKKurtosis
    ____________________    _______    ______    ___________    ________    _________    ______    ___________    ___________    _____________    ____________    __________    __________    ________    __________    __________

    07-Mar-2013 01:57:46    0.34605    2.2705      0.0038699     2.9956      21.621      2.2967      4.9147         1.2535          6.1607           3.3625       3.0907e+06      0.001253    0.025674     -0.22882        3.362  
    08-Mar-2013 02:34:21    0.24409    2.0621      0.0030103     3.0195       19.31      2.0765      4.9129         1.2545           6.163           3.7231       2.5266e+06     0.0046823    0.020888     0.057651       3.3508  
    09-Mar-2013 02:33:43    0.21873    2.1036     -0.0010289     3.0224      21.474      2.1149      5.2143         1.2539          6.5384           3.8766       2.6208e+06    -0.0011084    0.022705     -0.50004       4.9953  
    10-Mar-2013 03:01:02    0.21372    2.0081       0.001477     3.0415       19.52      2.0194       5.286         1.2556           6.637           4.1266       2.3894e+06     0.0087035    0.034456       1.4705       8.1235  
    11-Mar-2013 03:00:24    0.21518    2.0606      0.0010116     3.0445      21.217      2.0718      5.0058         1.2554          6.2841           3.8078        2.515e+06      0.013559    0.032193      0.11355        3.848  
    12-Mar-2013 06:17:10    0.29335    2.0791      -0.008428      3.018       20.05      2.0997      4.7966         1.2537          6.0136           3.5907       2.5833e+06     0.0017539    0.028326      -0.1288       3.8072  
    13-Mar-2013 06:34:04    0.21293     1.972     -0.0014294     3.0174      18.837      1.9834      4.8496         1.2539          6.0808           3.8441       2.3051e+06     0.0039353    0.029292      -1.4734       8.1242  
    14-Mar-2013 06:50:41    0.24401    1.8114      0.0022161     3.0057      17.862      1.8278      4.8638         1.2536          6.0975           4.1821       1.9575e+06     0.0013107    0.022468      0.27438       2.8597  
    15-Mar-2013 06:50:03    0.20984    1.9973       0.001559     3.0711       21.12      2.0083      5.4323         1.2568          6.8272           4.2724       2.3633e+06     0.0023769    0.047767      -2.5832       20.171  
    16-Mar-2013 06:56:43    0.23318    1.9842     -0.0019594     3.0072      18.832      1.9979      5.0483          1.254          6.3304           3.9734       2.3387e+06     0.0076327    0.030418      0.52322       4.0082  
    17-Mar-2013 06:56:04    0.21657     2.113     -0.0013711     3.1247      21.858      2.1241      5.4857         1.2587          6.9048           4.0916       2.6437e+06     0.0084907    0.037876       2.3753       11.491  
    17-Mar-2013 18:47:56    0.19381    2.1335      -0.012744     3.0934      21.589      2.1423      4.7574         1.2575          5.9825           3.5117       2.6891e+06      0.019624    0.055537       3.1986       17.796  
    18-Mar-2013 18:47:15    0.21919    2.1284     -0.0002039     3.1647      24.051      2.1396      5.7883         1.2595          7.2902           4.2914       2.6824e+06      0.016315    0.064516       2.8735       11.632  
    20-Mar-2013 00:33:54    0.35865    2.2536      -0.002308     3.0817      22.633      2.2819      5.2771         1.2571          6.6339           3.6546       3.0511e+06     0.0011097    0.051539    -0.056774       7.0712  
    21-Mar-2013 00:33:14     0.1908    2.1782    -0.00019286     3.1548      25.515      2.1865      6.0521           1.26          7.6258           4.3945       2.8013e+06     0.0040392    0.066254     -0.39587       12.111  
    22-Mar-2013 00:39:50    0.20569    2.1861      0.0020375     3.2691      26.439      2.1958      6.1753         1.2633          7.8011           4.4882        2.825e+06      0.020676    0.077728       2.6038       11.088  
      ⋮

Feature Postprocessing

Extracted features are usually associated with noise. The noise with opposite trend can sometimes be
harmful to the RUL prediction. In addition, one of the feature performance metrics, monotonicity, to
be introduced next is not robust to noise. Therefore, a causal moving mean filter with a lag window of
5 steps is applied to the extracted features, where "causal" means no future value is used in the
moving mean filtering.

variableNames = featureTable.Properties.VariableNames;
featureTableSmooth = varfun(@(x) movmean(x, [5 0]), featureTable);
featureTableSmooth.Properties.VariableNames = variableNames;

Here is an example showing the feature before and after smoothing.

figure
hold on
plot(featureTable.Date, featureTable.SKMean)
plot(featureTableSmooth.Date, featureTableSmooth.SKMean)
hold off
xlabel('Time')
ylabel('Feature Value')
legend('Before smoothing', 'After smoothing')
title('SKMean')
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Moving mean smoothing introduces a time delay of the signal, but the delay effect can be mitigated
by selecting proper threshold in the RUL prediction.

Training Data

In practice, the data of the whole life cycle is not available when developing the prognostic algorithm,
but it is reasonable to assume that some data in the early stage of the life cycle has been collected.
Hence data collected in the first 20 days (40% of the life cycle) is treated as training data. The
following feature importance ranking and fusion is only based on the training data.

breaktime = datetime(2013, 3, 27);
breakpoint = find(featureTableSmooth.Date < breaktime, 1, 'last');
trainData = featureTableSmooth(1:breakpoint, :);

Feature Importance Ranking

In this example, monotonicity proposed by [3] is used to quantify the merit of the features for
prognosis purpose.

Monotonicity of ith feature xi is computed as

Monotonicity xi = 1
m ∑

j = 1

m number of positive diff xi
j − number of negative diff xi

j

n− 1

 Wind Turbine High-Speed Bearing Prognosis

5-43



where n is the number of measurement points, in this case n = 50. m is the number of machines
monitored, in this case m = 1. xi

j is the ith feature measured on jth machine.

diff xi
j = xi

j t − xi
j t − 1 , i.e. the difference of the signal xi

j.

% Since moving window smoothing is already done, set 'WindowSize' to 0 to
% turn off the smoothing within the function
featureImportance = monotonicity(trainData, 'WindowSize', 0);
helperSortedBarPlot(featureImportance, 'Monotonicity');

Kurtosis of the signal is the top feature based on the monotonicity.

Features with feature importance score larger than 0.3 are selected for feature fusion in the next
section.

trainDataSelected = trainData(:, featureImportance{:,:}>0.3);
featureSelected = featureTableSmooth(:, featureImportance{:,:}>0.3)

featureSelected=50×5 timetable
            Date             Mean      Kurtosis    ShapeFactor    MarginFactor     SKStd  
    ____________________    _______    ________    ___________    ____________    ________

    07-Mar-2013 01:57:46    0.34605     2.9956       1.2535          3.3625       0.025674
    08-Mar-2013 02:34:21    0.29507     3.0075        1.254          3.5428       0.023281
    09-Mar-2013 02:33:43    0.26962     3.0125        1.254          3.6541       0.023089
    10-Mar-2013 03:01:02    0.25565     3.0197       1.2544          3.7722       0.025931
    11-Mar-2013 03:00:24    0.24756     3.0247       1.2546          3.7793       0.027183
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    12-Mar-2013 06:17:10    0.25519     3.0236       1.2544          3.7479       0.027374
    13-Mar-2013 06:34:04      0.233     3.0272       1.2545          3.8282       0.027977
    14-Mar-2013 06:50:41    0.23299     3.0249       1.2544          3.9047        0.02824
    15-Mar-2013 06:50:03     0.2315      3.033       1.2548          3.9706       0.032417
    16-Mar-2013 06:56:43    0.23475     3.0273       1.2546          3.9451       0.031744
    17-Mar-2013 06:56:04    0.23498     3.0407       1.2551          3.9924       0.032691
    17-Mar-2013 18:47:56    0.21839     3.0533       1.2557          3.9792       0.037226
    18-Mar-2013 18:47:15    0.21943     3.0778       1.2567          4.0538       0.043097
    20-Mar-2013 00:33:54    0.23854     3.0905       1.2573          3.9658       0.047942
    21-Mar-2013 00:33:14    0.23537     3.1044       1.2578          3.9862       0.051023
    22-Mar-2013 00:39:50    0.23079     3.1481       1.2593           4.072       0.058908
      ⋮

Dimension Reduction and Feature Fusion

Principal Component Analysis (PCA) is used for dimension reduction and feature fusion in this
example. Before performing PCA, it is a good practice to normalize the features into the same scale.
Note that PCA coefficients and the mean and standard deviation used in normalization are obtained
from training data, and applied to the entire dataset.

meanTrain = mean(trainDataSelected{:,:});
sdTrain = std(trainDataSelected{:,:});
trainDataNormalized = (trainDataSelected{:,:} - meanTrain)./sdTrain;
coef = pca(trainDataNormalized);

The mean, standard deviation and PCA coefficients are used to process the entire data set.

PCA1 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 1);
PCA2 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 2);

Visualize the data in the space of the first two principal components.

figure
numData = size(featureTable, 1);
scatter(PCA1, PCA2, [], 1:numData, 'filled')
xlabel('PCA 1')
ylabel('PCA 2')
cbar = colorbar;
ylabel(cbar, ['Time (' timeUnit ')'])
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The plot indicates that the first principal component is increasing as the machine approaches to
failure. Therefore, the first principal component is a promising fused health indicator.

healthIndicator = PCA1;

Visualize the health indicator.

figure
plot(featureSelected.Date, healthIndicator, '-o')
xlabel('Time')
title('Health Indicator')
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Fit Exponential Degradation Models for Remaining Useful Life (RUL) Estimation

Exponential degradation model is defined as

h t = ϕ + θ exp β t + ϵ − σ2

2

where h t  is the health indicator as a function of time. ϕ is the intercept term considered as a
constant. θ and β  are random parameters determining the slope of the model, where θ is lognormal-
distributed and β is Gaussian-distributed. At each time step t, the distribution of θ and β is updated to
the posterior based on the latest observation of h t . ϵ  is a Gaussian white noise yielding to N 0, σ2 .

The − σ2
2  term in the exponential is to make the expectation of h t  satisfy

E h t θ , β = ϕ + θ exp β t .

Here an Exponential Degradation Model is fit to the health indicator extracted in the last section, and
the performances is evaluated in the next section.

First shift the health indicator so that it starts from 0.

healthIndicator = healthIndicator - healthIndicator(1);

The selection of threshold is usually based on the historical records of the machine or some domain-
specific knowledge. Since no historical data is available in this dataset, the last value of the health
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indicator is chosen as the threshold. It is recommended to choose the threshold based on the
smoothed (historical) data so that the delay effect of smoothing will be partially mitigated.

threshold = healthIndicator(end);

If historical data is available, use fit method provided by exponentialDegradationModel to
estimate the priors and intercept. However, historical data is not available for this wind turbine
bearing dataset. The prior of the slope parameters are chosen arbitrarily with large variances
(E θ = 1, Var θ = 106, E β = 1, Var β = 106) so that the model is mostly relying on the observed
data. Based on E h 0 = ϕ + E θ , intercept ϕ is set to −1 so that the model will start from 0 as well.

The relationship between the variation of health indicator and the variation of noise can be derived as

Δh t ≈ h t − ϕ Δϵ t

Here the standard deviation of the noise is assumed to cause 10% of variation of the health indicator
when it is near the threshold. Therefore, the standard deviation of the noise can be represented as
10 % ⋅ threshold
threshold − ϕ .

The exponential degradation model also provides a functionality to evaluate the significance of the
slope. Once a significant slope of the health indicator is detected, the model will forget the previous
observations and restart the estimation based on the original priors. The sensitivity of the detection
algorithm can be tuned by specifying SlopeDetectionLevel. If p value is less than
SlopeDetectionLevel, the slope is declared to be detected. Here SlopeDetectionLevel is set to
0.05.

Now create an exponential degradation model with the parameters discussed above.

mdl = exponentialDegradationModel(...
    'Theta', 1, ...
    'ThetaVariance', 1e6, ...
    'Beta', 1, ...
    'BetaVariance', 1e6, ...
    'Phi', -1, ...
    'NoiseVariance', (0.1*threshold/(threshold + 1))^2, ...
    'SlopeDetectionLevel', 0.05);

Use predictRUL and update methods to predict the RUL and update the parameter distribution in
real time.

% Keep records at each iteration
totalDay = length(healthIndicator) - 1;
estRULs = zeros(totalDay, 1);
trueRULs = zeros(totalDay, 1);
CIRULs = zeros(totalDay, 2);
pdfRULs = cell(totalDay, 1);

% Create figures and axes for plot updating
figure
ax1 = subplot(2, 1, 1);
ax2 = subplot(2, 1, 2);

for currentDay = 1:totalDay
    
    % Update model parameter posterior distribution
    update(mdl, [currentDay healthIndicator(currentDay)])
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    % Predict Remaining Useful Life
    [estRUL, CIRUL, pdfRUL] = predictRUL(mdl, ...
                                         [currentDay healthIndicator(currentDay)], ...
                                         threshold);
    trueRUL = totalDay - currentDay + 1;
    
    % Updating RUL distribution plot
    helperPlotTrend(ax1, currentDay, healthIndicator, mdl, threshold, timeUnit);
    helperPlotRUL(ax2, trueRUL, estRUL, CIRUL, pdfRUL, timeUnit)
    
    % Keep prediction results
    estRULs(currentDay) = estRUL;
    trueRULs(currentDay) = trueRUL;
    CIRULs(currentDay, :) = CIRUL;
    pdfRULs{currentDay} = pdfRUL;
    
    % Pause 0.1 seconds to make the animation visible
    pause(0.1)
end

Here is the animation of the real-time RUL estimation.
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Performance Analysis

α-λ plot is used for prognostic performance analysis [5], where α bound is set to 20%. The probability
that the estimated RUL is between the α bound of the true RUL is calculated as a performance metric
of the model:

Pr r* t − αr* t < r t < r* t + αr* t Θ t

where r t  is the estimated RUL at time t, r* t  is the true RUL at time t, Θ t  is the estimated model
parameters at time t .

alpha = 0.2;
detectTime = mdl.SlopeDetectionInstant;
prob = helperAlphaLambdaPlot(alpha, trueRULs, estRULs, CIRULs, ...
    pdfRULs, detectTime, breakpoint, timeUnit);
title('\alpha-\lambda Plot')
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Since the preset prior does not reflect the true prior, the model usually need a few time steps to
adjust to a proper parameter distribution. The prediction becomes more accurate as more data points
are available.

Visualize the probability of the predicted RUL within the α bound.

figure
t = 1:totalDay;
hold on
plot(t, prob)
plot([breakpoint breakpoint], [0 1], 'k-.')
hold off
xlabel(['Time (' timeUnit ')'])
ylabel('Probability')
legend('Probability of predicted RUL within \alpha bound', 'Train-Test Breakpoint')
title(['Probability within \alpha bound, \alpha = ' num2str(alpha*100) '%'])
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• “RUL Estimation Using RUL Estimator Models” on page 5-7
• “Similarity-Based Remaining Useful Life Estimation” on page 5-15
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Condition Monitoring and Prognostics Using Vibration Signals
This example shows how to extract features from vibration signals from a ball bearing, conduct
health monitoring, and perform prognostics. This example uses functionality from Signal Processing
Toolbox™ and System Identification Toolbox™, and does not require Predictive Maintenance
Toolbox™.

Data Description

Load vibration data stored in pdmBearingConditionMonitoringData.mat (this is a large dataset
~88MB that is downloaded from the MathWorks support files site). The data is stored in a cell array,
which was generated using a ball bearing signal simulator with single point defect on the outer race
of the bearing. It contains multiple segments of vibration signals for bearings simulated in different
health conditions (defect depth increases from 3um to above 3mm). Each segment stores signals
collected for 1 second at a sampling rate of 20 kHz. In pdmBearingConditionMonitoringData.mat,
the defectDepthVec stores how defect depth changes versus time while the expTime stores the
corresponding time in minutes.

url = 'https://www.mathworks.com/supportfiles/predmaint/condition-monitoring-and-prognostics-using-vibration-signals/pdmBearingConditionMonitoringData.mat';
websave('pdmBearingConditionMonitoringData.mat',url);
load pdmBearingConditionMonitoringData.mat

% Define the number of data points to be processed.
numSamples = length(data);

% Define sampling frequency.
fs = 20E3;          % unit: Hz

Plot how defect depth changes in different segments of data.

plot(expTime,defectDepthVec);
xlabel('Time (min)');
ylabel('Defect depth (m)');
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Plot the healthy and faulty data.

time = linspace(0,1,fs)';

% healthy bearing signal
subplot(2,1,1);
plot(time,data{1});
xlabel('Time(s)');
ylabel('Acceleration(m/s^2)');
legend('Healthy bearing signal');

% faulty bearing signal
subplot(2,1,2);
plot(time,data{end});
xlabel('Time(s)');
ylabel('Acceleration(m/s^2)');
legend('Faulty bearing signal');
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Feature Extraction

In this section, representative features are extracted from each segment of data. These features will
be used for health monitoring and prognostics. Typical features for bearing diagnostics and
prognostics include time-domain features (root mean square, peak value, signal kurtosis, etc.) or
frequency-domain features (peak frequency, mean frequency, etc.).

Before selecting which features to use, plot the vibration signals spectrogram. Visualizing signals in
time-domain or frequency-domain or time-frequency domain can help discover signal patterns that
indicate degradation or failure.

First calculate the spectrogram of the healthy bearing data. Use a window size of 500 data points and
an overlap ratio of 90% (equivalent to 450 data points). Set the number of points for the FFT to be
512. fs represents the sampling frequency defined previously.

[~,fvec,tvec,P0] = spectrogram(data{1},500,450,512,fs);

P0 is the spectrogram, fvec is the frequency vector and tvec is the time vector.

Plot the spectrogram of the healthy bearing signal.

clf;
imagesc(tvec,fvec,P0)
xlabel('Time(s)');
ylabel('Frequency(Hz)');
title('Healthy Bearing Signal Spectrogram');
axis xy
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Now plot the spectrogram of vibration signals that have developed faulty patterns. You can see that
signal energies are concentrated at higher frequencies.

[~,fvec,tvec,Pfinal] = spectrogram(data{end},500,450,512,fs);
imagesc(tvec,fvec,Pfinal)
xlabel('Time(s)');
ylabel('Frequency(Hz)');
title('Faulty Bearing Signal Spectrogram');
axis xy
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Since the spectrograms for data from healthy and faulty bearings are different, representative
features can be extracted from spectrograms and used for condition monitoring and prognostics. In
this example, extract mean peak frequencies from spectrograms as health indicators. Denote the
spectrogram as P(t, ω). Peak frequency at each time instance is defined as:

PeakFreq(t) = argmaxωP(t, ω)

The mean peak frequency is the average of peak frequencies defined above.

meanPeakFreq = 1
T∫0 T

PeakFreq(t)dt

Calculate the mean peak frequency for healthy ball bearing signals.

[~,I0] = max(P0);               % Find out where the peak frequencies are located.
meanPeakFreq0 = mean(fvec(I0))  % Calculate mean peak frequency.

meanPeakFreq0 = 666.4602

The healthy bearing vibration signals have mean peak frequency at around 650 Hz. Now calculate the
mean peak frequency for faulty bearing signals. The mean peak frequency shifts to above 2500 Hz.

[~,Ifinal] = max(Pfinal);
meanPeakFreqFinal = mean(fvec(Ifinal))

meanPeakFreqFinal = 2.8068e+03
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Examine the data at middle stage, when the defect depth is not very large but starting to affect the
vibration signals.

[~,fvec,tvec,Pmiddle] = spectrogram(data{end/2},500,450,512,fs);
imagesc(tvec,fvec,Pmiddle)
xlabel('Time(s)');
ylabel('Frequency(Hz)');
title('Bearing Signal Spectrogram');
axis xy

The high frequency noise components are spread all over the spectrogram. Such phenomena are
mixed effects of both original vibrations and the vibrations induced by small defects. To accurately
calculate mean peak frequency, filter the data to remove those high frequency components.

Apply a median filter to the vibration signals to remove high frequency noise components as well as
to preserve useful information in the high frequencies.

dataMiddleFilt = medfilt1(data{end/2},3);

Plot spectrogram after median filtering. The high frequency components are suppressed.

[~,fvec,tvec,Pmiddle] = spectrogram(dataMiddleFilt,500,450,512,fs);
imagesc(tvec,fvec,Pmiddle)
xlabel('Time(s)');
ylabel('Frequency(Hz)');
title('Filtered Bearing Signal Spectrogram');
axis xy
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Since the mean peak frequency successfully distinguishes healthy ball bearings from faulty ball
bearings, extract mean peak frequency from each segment of data.

% Define a progress bar.
h = waitbar(0,'Start to extract features');
% Initialize a vector to store the extracted mean peak frequencies.
meanPeakFreq = zeros(numSamples,1);
for k = 1:numSamples
    % Get most up-to-date data.
    curData = data{k};
    % Apply median filter.
    curDataFilt = medfilt1(curData,3);
    % Calculate spectrogram.
    [~,fvec,tvec,P_k] = spectrogram(curDataFilt,500,450,512,fs);
    % Calculate peak frequency at each time instance.
    [~,I] = max(P_k);
    meanPeakFreq(k) = mean(fvec(I));
    % Show progress bar indicating how many samples have been processed.
    waitbar(k/numSamples,h,'Extracting features');
end
close(h);

Plot the extracted mean peak frequencies versus time.

plot(expTime,meanPeakFreq);
xlabel('Time(min)');
ylabel('Mean peak frequency (Hz)');
grid on;
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Condition Monitoring and Prognostics

In this section, condition monitoring and prognostics are performed using a pre-defined threshold and
dynamic models. For condition monitoring, create an alarm that triggers if the mean peak frequency
exceeds the predefined threshold. For prognostics, identify a dynamic model to forecast the values of
mean peak frequencies in the next few hours. Create an alarm that triggers if the forecast mean peak
frequency exceeds the predefined threshold.

Forecasting helps us better prepare for a potential fault or even stop the machine before failure.
Consider the mean peak frequency as a time series. We can estimate a time series model for the mean
peak frequency and use the model to forecast the future values. Use the first 200 mean peak
frequency values to create an initial time series model, then once 10 new values are available, use the
last 100 values to update the time series model. This batch mode of updating the time series model
captures instantaneous trends. The updated time series model is used to compute a 10 step ahead
forecast.

tStart = 200;               % Start Time
timeSeg = 100;              % Length of data for building dynamic model
forecastLen = 10;           % Define forecast time horizon
batchSize = 10;             % Define batch size for updating the dynamic model

For prognostics and condition monitoring, you need to set a threshold to decide when to stop the
machine. In this example, use the statistical data of healthy and faulty bearing generated from
simulation to determine the threshold. The pdmBearingConditionMonitoringStatistics.mat
stores the probability distributions of mean peak frequencies for healthy and faulty bearings. The
probability distributions are computed by perturbing the defect depth of healthy and faulty bearings.
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url = 'https://www.mathworks.com/supportfiles/predmaint/condition-monitoring-and-prognostics-using-vibration-signals/pdmBearingConditionMonitoringStatistics.mat';
websave('pdmBearingConditionMonitoringStatistics.mat',url);
load pdmBearingConditionMonitoringStatistics.mat

Plot the probability distributions of mean peak frequency for healthy and faulty bearings.

plot(pFreq,pNormal,'g--',pFreq,pFaulty,'r');
xlabel('Mean peak frequency(Hz)');
ylabel('Probability Distribution');
legend('Normal Bearing','Faulty Bearing');

Based on this plot, set the threshold for the mean peak frequency to 2000Hz to distinguish normal
bearings from faulty bearings as well as maximize the use of the bearings.

threshold = 2000;

Calculate sampling time and convert its unit to seconds.

samplingTime = 60*(expTime(2)-expTime(1));                  % unit: seconds
tsFeature = iddata(meanPeakFreq(1:tStart),[],samplingTime);

Plot the initial 200 mean peak frequency data.

plot(tsFeature.y)
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The plot shows that the initial data is a combination of constant level and noise. This is expected as
initially the bearing is healthy and the mean peak frequency is not expected to change significantly

Identify a second-order state-space model using the first 200 data points. Obtain the model in
canonical form and specify the sampling time.

past_sys = ssest(tsFeature,2,'Ts',samplingTime,'Form','canonical')

past_sys =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + K e(t)
       y(t) = C x(t) + e(t)
 
  A = 
            x1       x2
   x1        0        1
   x2   0.9605  0.03942
 
  C = 
       x1  x2
   y1   1   0
 
  K = 
              y1
   x1  -0.003899
   x2   0.003656
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Sample time: 600 seconds
  
Parameterization:
   CANONICAL form with indices: 2.
   Disturbance component: estimate
   Number of free coefficients: 4
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                               
Estimated using SSEST on time domain data "tsFeature".
Fit to estimation data: 0.2763% (prediction focus)    
FPE: 640, MSE: 602.7                                  

The initial estimated dynamic model has a low goodness of fit. The goodness of fit metric is the
normalized root mean square error (NRMSE), calculated as

NRMSE = 1 −
xtrue− xpred

xtrue−mean(xtrue)

where xtrue is the true value, xpred is the predicted value.

When the estimation data is a combination of constant level and noise, xpred ≈ mean(xtrue), giving a
NRMSE close to 0. To validate the model, plot the autocorrelation of residuals.

resid(tsFeature,past_sys)

As seen, the residuals are uncorrelated and the generated model is valid.
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Use the identified model past_sys to forecast mean peak frequency values and compute the
standard deviation of the forecasted values.

[yF,~,~,yFSD] = forecast(past_sys,tsFeature,forecastLen);

Plot the forecasted values and confidence intervals.

tHistory = expTime(1:tStart);
forecastTimeIdx = (tStart+1):(tStart+forecastLen);
tForecast = expTime(forecastTimeIdx);

% Plot historical data, forecast value and 95% confidence interval.
plot(tHistory,meanPeakFreq(1:tStart),'b',...
     tForecast,yF.OutputData,'kx',...
     [tHistory; tForecast], threshold*ones(1,length(tHistory)+forecastLen), 'r--',...
     tForecast,yF.OutputData+1.96*yFSD,'g--',...
     tForecast,yF.OutputData-1.96*yFSD,'g--');

ylim([400, 1.1*threshold]);
ylabel('Mean peak frequency (Hz)');
xlabel('Time (min)');
legend({'Past Data', 'Forecast', 'Failure Threshold', '95% C.I'},...
    'Location','northoutside','Orientation','horizontal');
grid on;

The plot shows that the forecasted values of the mean peak frequency are well below the threshold.
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Now update model parameters as new data comes in, and re-estimate the forecasted values. Also
create an alarm to check if the signals or the forecasted value exceed the failure threshold.

for tCur = tStart:batchSize:numSamples
    %  latest features into iddata object.
    tsFeature = iddata(meanPeakFreq((tCur-timeSeg+1):tCur),[],samplingTime);
    
    % Update system parameters when new data comes in. Use previous model
    % parameters as initial guesses.
    sys = ssest(tsFeature,past_sys);
    past_sys = sys;
    
    % Forecast the output of the updated state-space model. Also compute
    % the standard deviation of the forecasted output.
    [yF,~,~,yFSD]  = forecast(sys, tsFeature, forecastLen);
    
    % Find the time corresponding to historical data and forecasted values.
    tHistory = expTime(1:tCur);
    forecastTimeIdx = (tCur+1):(tCur+forecastLen);
    tForecast = expTime(forecastTimeIdx);
    
    % Plot historical data, forecasted mean peak frequency value and 95%
    % confidence interval.
    plot(tHistory,meanPeakFreq(1:tCur),'b',...
              tForecast,yF.OutputData,'kx',...
              [tHistory; tForecast], threshold*ones(1,length(tHistory)+forecastLen), 'r--',...
              tForecast,yF.OutputData+1.96*yFSD,'g--',...
              tForecast,yF.OutputData-1.96*yFSD,'g--');

    ylim([400, 1.1*threshold]);
    ylabel('Mean peak frequency (Hz)');
    xlabel('Time (min)');
    legend({'Past Data', 'Forecast', 'Failure Threshold', '95% C.I'},...
           'Location','northoutside','Orientation','horizontal');
    grid on;
    
    % Display an alarm when actual monitored variables or forecasted values exceed
    % failure threshold.
    if(any(meanPeakFreq(tCur-batchSize+1:tCur)>threshold))
        disp('Monitored variable exceeds failure threshold');
        break;
    elseif(any(yF.y>threshold))
        % Estimate the time when the system will reach failure threshold.
        tAlarm = tForecast(find(yF.y>threshold,1));
        disp(['Estimated to hit failure threshold in ' num2str(tAlarm-tHistory(end)) ' minutes from now.']);
        break;
    end
end
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Estimated to hit failure threshold in 80 minutes from now.

Examine the most recent time series model.

sys

sys =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + K e(t)
       y(t) = C x(t) + e(t)
 
  A = 
           x1      x2
   x1       0       1
   x2  0.2624   0.746
 
  C = 
       x1  x2
   y1   1   0
 
  K = 
           y1
   x1  0.3902
   x2  0.3002
 
Sample time: 600 seconds
  
Parameterization:

 Condition Monitoring and Prognostics Using Vibration Signals

5-67



   CANONICAL form with indices: 2.
   Disturbance component: estimate
   Number of free coefficients: 4
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                               
Estimated using SSEST on time domain data "tsFeature".
Fit to estimation data: 92.53% (prediction focus)     
FPE: 499.3, MSE: 442.7                                

The goodness of fit increases to above 90%, and the trend is correctly captured.

Conclusions

This example shows how to extract features from measured data to perform condition monitoring and
prognostics. Based on extracted features, dynamic models are generated, validated and used to
forecast time of failures so that actions can be taken before actual failures happen.

See Also

More About
• “RUL Estimation Using Identified Models or State Estimators” on page 5-6
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Nonlinear State Estimation of a Degrading Battery System
This example shows how to estimate the states of a nonlinear system using an unscented Kalman
filter in Simulink®. The example also illustrates how to develop an event-based Kalman filter to
update system parameters for more accurate state estimation. The example runs with either Control
System Toolbox™ or System Identification Toolbox™. The example does not require Predictive
Maintenance Toolbox™.

Overview

Consider a battery model with the following equivalent circuit [1]

The model consists of a voltage source , a series resistor  and a single RC block  and . The
battery alternates between charging and discharging cycles. In this example, you estimate the state
of charge (SOC) of a battery model using measured currents, voltages and temperatures of the
battery. You assume the battery is a nonlinear system, estimate the SOC using an unscented Kalman
filter. The capacity of the battery degrades with every discharge-charge cycle, giving an inaccurate
SOC estimation. Use an event-based linear Kalman filter to estimate the battery capacity when the
battery transitions between charging and discharging. The estimated capacity in turn can be used to
indicate the health condition of the battery.

The Simulink model contains three major components: a battery model, an unscented Kalman filter
block and an event-based Kalman filter block. Further explanations are given in the following
sections.

open_system('BatteryExampleUKF/')
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Battery Model

The battery model with thermal effects is implemented using the Simscape language.
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The state transition equations for the battery model are given by:

where  and  are the thermal and SOC dependent resistor and capacitor in
the RC block,  is the voltage across capacitor ,  is the input current,  is the battery
temperature,  is the battery capacity (unit: Ah), and  is the process noise.

The input currents are randomly generated pulses when the battery is discharging and constant when
the battery is charging, as shown in the following figure.
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The measurement equation is given by:

where  is the measured voltage output,  is the serial resistor,  is
the electromotive force from voltage source, and  is the measurement noise.

In the model,  and  are 2D look-up tables that are dependent on SOC and battery
temperature. The parameters in the look-up tables are identified using experimental data [1].

Estimating State of Charge (SOC)

To use the unscented Kalman filter block, either Matlab or Simulink functions for the state and
measurement equations need to be defined. This example demonstrates the use of Simulink
functions .Since unscented Kalman filters are discrete-time filters, first discretize the state equations.
In this example, Euler discretization is employed. Let the sampling time be . For a general
nonlinear system , the system can be discretized as 

The state vectors of the nonlinear battery system are

.

Applying Euler discretization gives the following equations:
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The discretized state transition equation is implemented as a Simulink function named
"batteryStateFcn" shown below. The function input x is the state vector while the function output
xNext is the state vector at next step, calculated using discretized state transition equations. You
need to specify the signal dimensions and data type of x and xNext. In this example, the signal
dimension for x and xNext is 2 and the data type is double. Additional inputs are the temperature,
estimated capacity, and current. Note that the additional inputs are inputs to the state transition
equations and not required by the UKF block.

The measurement function is also implemented as a Simulink function named
"batteryMeasurementFcn" as shown below.
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Configure the block parameters as follows:

In the System Model tab, specify the block parameters as shown:

You specify the following parameters:

• Function in State Transition: batteryStateFcn.
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The name of the simulink function defined previously that implements the discretized state transition
equation.

•

Process noise: Additive, with time-varying covariance . The Additive
means the noise term is added to the final signals directly.

The process noise for SOC and  are estimated based on the dynamic characteristics of the battery
system. The battery has nominal capacity of 30 Ah and undergoes discharge/charge cycles at an
average current amplitude of 15A. Therefore, one discharging or charging process would take around
2 hours (7200 seconds). The maximum change is 100% for SOC and around 4 volts for .

The maximum changes per step in SOC and  are  and
, where  is the sampling time of the filter. In this example,  is set to be 1

second.

The process noise  is:

.

•

Initial State: .

The initial value for SOC is assumed to be 100% (fully charged battery) while initial value for  is set
to be 0, as we do not have any prior information of .

• Initial Covariance:

Initial covariance indicates how accurate and reliable the initial guesses are. Assume the maximum

initial guess error is 10% for SOC and 1V for . The initial covariance matrix is set to be .

• Unscented Transformation Parameters: The setting is based on [2]

     - Alpha: 1. Determine the spread of sigma points around x. Set Alpha to be 1 for larger spread.
     - Beta: 2. Used to incorporate prior knowledge of the distribution. The nominal value for Beta is 2.
     - Kappa: 0. Secondary scaling parameter. The nominal value for Kappa is 0.

• Function in Measurement: batteryMeasurementFcn.

the name of the simulink function defined previously that implements the measurement function.

• Measurement noise: Additive, with time-invariant covariance 1e-3.

The measurement noise is estimated based on measurement equipment accuracy. A voltage meter for
battery voltage measurement has approximately 1% accuracy. The battery voltage is around 4V.
Equivalently, we have . Therefore, set .

• Sample Time: .
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Estimating Battery Degradation

The battery degradation is modeled by decreasing capacity . In this example, the battery capacity
is set to decrease 1 Ah per discharge-charge cycle to illustrate the effect of degradation. Since the
degradation rate of capacity is not known in advance, set the state equation of  to be a random
walk:

where  is the number of discharge-charge cycles and  is the process noise.

The battery is configured to automatically charge when the battery state of charge is at 30% and
switch to discharging when state of charge is at 90%. Use this information to measure the battery
capacity by integrating the current  over a charge or discharge cycle (coulomb counting).

The measurement equation for  is:

where  is the measurement noise.

The state and measurement equation of battery degradation can be put into the following state space
form:

where  and  are equal to 1.

For the above linear system, use a Kalman filter to estimate battery capacity. The estimated  from
the linear Kalman filter is used to improve SOC estimation. In the example, an event-based linear
Kalman filter is used to estimate . Since  is measured once over a charge or discharge cycle, the
linear Kalman filter is enabled only when charging or discharging ends.

Configure the block parameters and options as follows:
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Click Model Parameters to specify the plant model and noise characteristics:

• Model source: Input Port.

To implement an event-based Kalman filter, the state equation is enabled only when the event
happens. In other word, the state equation is event-based as well. For a linear system

, set the state equation to be

.

•

A: . In this example, . As a result,  equals 1 all the time.
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•
C: 1, from .

• Initial Estimate Source: Dialog. You specify initial states in Initial state x[0]

• Initial states x[0]: 30. It is the nominal capacity of battery (30Ah).

•

Q: 

This is the covariance of the process noise . Since degradation rate in the capacity is around 1 Ah
per discharge-charge cycle, set the process noise to be 1.

• R: 0.1. This is the covariance of the measurement noise . Assume the capacity measurement
error is less than 1%. With battery capacity of 30 Ah, the measurement noise .

• Sample Time: Ts.

Click Options to add input port Enable to control measurement updates. The enable port is used to
update the battery capacity estimate on charge/discharge events as opposed to continually updating.

Note that setting Enable to 0 does not disable predictions using state equations. It is the reason why
the state equation is configured to be event-based as well. By setting an event-based A and Q for the
Kalman filter block, predictions using state equations are disabled when Enable is set to be 0.

Results

To simulate the system, load the battery parameters. The file contains the battery parameters
including , ,  and etc.

load BatteryParameters.mat

Simulate the system.

sim('BatteryExampleUKF')

At every time step, the unscented Kalman filter provides an estimation for SOC based on voltage
measurements . Plot the real SOC, the estimated SOC, and the difference between them.

% Synchronize two time series
[RealSOC, EstimatedSOC] = synchronize(RealSOC, EstimatedSOC, 'intersection');

figure;
subplot(2,1,1)
plot(100*RealSOC,'b','LineWidth',1.5);
hold on
plot(100*EstimatedSOC,'r--','LineWidth',1);
title('State of Charge');
xlabel('Time (s)');
ylabel('SOC (%)');
legend('Actual','UKF estimate','Location','Best','Orientation','horizontal');
axis tight

subplot(2,1,2)
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DiffSOC = 100*(RealSOC - EstimatedSOC);
plot(DiffSOC.Time, DiffSOC.Data, 'LineWidth', 1.5);
xlabel('Time(s)');
ylabel('\Delta SOC (%)','Interpreter','Tex');
legend('Difference between Real SOC and Estiamted SOC','Location','Best')
axis tight

After an initial estimation error, the SOC converges quickly to the real SOC. The final estimation error
is within 0.5% error. The unscented Kalman filter gives an accurate estimation of SOC.

At every discharge-charge transitions, the battery capacity is estimated to improve the SOC
estimation. The battery system outputs indicator signals to inform what process the battery is in.
Discharging process is represented by -1 in the indicator signals while charging process is
represented by 1. In this example, changes in the indicator signals are used to determine when to
enable or disable Kalman filter for capacity estimation. We plot the real and estimated capacity as
well as the charge-discharge indicator signals.

figure;
subplot(2,1,1);
plot(RealCapacity,'b','LineWidth',1.5);
hold on
plot(EstimatedCapacity,'r--','LineWidth',1.5);
xlabel('Time (s)');
ylabel('Capacity (Ah)');
legend('Actual','KF estimate','Location','Best');

subplot(2,1,2);
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plot(DischargeChargeIndicator.Time,DischargeChargeIndicator.Data,'b','LineWidth',1.5);
xlabel('Time(s)');
ylabel('Indicator Signal');

In general, the Kalman filter is able to track the real capacity. There is a half cycle delay between
estimated capacity and real capacity. This delay is due to the timing of the measurements. The
battery capacity degradation calculation occurs when one full discharge-charge cycle ends. The
coulomb counting gives a capacity measurement based on the previous discharge or charge cycle.

Summary

This example shows how to use the Simulink unscented Kalman filter block to perform nonlinear state
estimation for a lithium battery. In addition, steps to develop an event-based Kalman filter for battery
capacity estimation are illustrated. The newly estimated capacity is used to improve SOC estimation
in the unscented Kalman filter.
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More About
• “RUL Estimation Using Identified Models or State Estimators” on page 5-6
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Deploy Predictive Maintenance Algorithms
Deployment or integration of a predictive maintenance algorithm is typically the final stage of the
algorithm-development workflow. How you ultimately deploy the algorithm can also be a
consideration in earlier stages of algorithm design. For example, whether the algorithm runs on
embedded hardware, as a stand-alone executable, or as a web application can have impact on
requirements and other aspects of the complete predictive-maintenance system design. MathWorks®

products support several phases of the process for developing, deploying, and validating predictive
maintenance algorithms.

The design-V, a conceptual diagram often used in the context of Model-Based Design, is also relevant
when considering the design and deployment of a predictive maintenance algorithm. The design-V
highlights the key deployment and implementation phases:

Specifications and Requirements
Developing specifications and requirements includes considerations both from the predictive
maintenance algorithm perspective and the deployment perspective. Predictive maintenance
algorithm requirements come from an understanding of the system coupled with mathematical
analysis of the process, its signals, and expected faults. Deployment requirements can include
requirements on:

• Memory and computational power.
• Operating mode. For instance, the algorithm might be a batch process that runs at some fixed

time interval such as once a day. Or, it might be a streaming process that runs every time new
data is available.

• Maintenance or update of the algorithm. For example, the deployed algorithm might be fixed,
changing only changes through occasional updates. Or, you might develop an algorithm that
adapts and automatically updates as new data is available.

• Where the algorithm runs, such as whether the algorithm must run in a cloud, or be offered as a
web service.
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Design and Prototype
This phase of the design-V includes data management, design of data preprocessing, identification of
condition indicators, and training of a classification model for fault detection or a model for
estimating remaining useful life. (See “Designing Algorithms for Condition Monitoring and Predictive
Maintenance”, which provides an overview of the algorithm-design process.) In the design phase, you
often use historic or synthesized data to test and tune the developed algorithm.

Implement and Deploy
Once you have developed a candidate algorithm, the next phase is to implement and deploy the
algorithm. MathWorks products support many different application needs and resource constraints,
ranging from standalone applications to web services.

• MATLAB Compiler™ — Create standalone applications or shared libraries to execute algorithms
developed using Predictive Maintenance Toolbox. You can use MATLAB Compiler to deploy
MATLAB code in many ways, including as a standalone Windows® application, a shared library, an
Excel® add-in, a Microsoft® .NET assembly, or a generic COM component. Such applications or
libraries run outside the MATLAB environment using the MATLAB Runtime, which is freely
distributable. The MATLAB Runtime can be packaged and installed with your application, or
downloaded during the installation process. For more information about deployment with MATLAB
Compiler, see “Get Started with MATLAB Compiler” (MATLAB Compiler).

• MATLAB Production Server™ — Integrate your algorithms into web, database, and enterprise
applications. MATLAB Production Server leverages the MATLAB Compiler to run your applications
on dedicated servers or a cloud. You can package your predictive maintenance algorithms using
MATLAB Compiler SDK™, which extends the functionality of MATLAB Compiler to let you build
C/C++ shared libraries, Microsoft .NET assemblies, Java® classes, or Python® packages from
MATLAB programs. Then, you can deploy the generated libraries to MATLAB Production Server
without recoding or creating custom infrastructure.

• ThingSpeak™ — This Internet of Things (IoT) analytics platform service lets you aggregate,
visualize, and analyze live data streams in the cloud. For diagnostics and prognostics algorithms
that run at intervals of 5 minutes or longer, you can use the ThingSpeak IoT platform to visualize
results and monitor the condition of your system. You can also use ThingSpeak as a quick and easy
prototyping platform before deployment using the MATLAB Production Server. You can transfer
diagnostic data using ThingSpeak web services and use its charting tools to create dashboards for
monitoring progress and generating failure alarms. ThingSpeak can communicate directly with
desktop MATLAB or MATLAB code embedded in target devices.

• MATLAB Coder™ and Simulink Coder — Generate C/C++ code from MATLAB or Simulink. Many
Signal Processing Toolbox, Statistics and Machine Learning Toolbox, and System Identification
Toolbox functions support MATLAB Coder. For example, you can generate code from algorithms
that use the System Identification Toolbox state estimation (such as extendedKalmanFilter)
and recursive parameter estimation (such as recursiveAR) functionality. See “Functions and
Objects Supported for C/C++ Code Generation” (MATLAB Coder) for a more comprehensive list.

One choice you often have to make is to whether to deploy your algorithm on an embedded system or
on the cloud.

A cloud implementation can be useful when you are gathering and storing large amounts of data on
the cloud. Removing the need to transfer data between the cloud and local machines that are running
the prognostics and health monitoring algorithm makes the maintenance process more effective.
Results calculated on the cloud can be made available through tweets, email notifications, web apps,
and dashboards. For cloud implementations, you can use ThingSpeak or MATLAB Production Server.
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Alternatively, the algorithm can run on embedded devices that are closer to the actual equipment.
The main benefits of doing this are that the amount of information sent is reduced as data is
transmitted only when needed, and updates and notifications about equipment health are
immediately available without any delay. For embedded implementations, you can use MATLAB
Compiler, MATLAB Coder, or Simulink Coder to generate code that runs on a local machine.

A third option is to use a combination of the two. The preprocessing and feature extraction parts of
the algorithm can be run on embedded devices, while the predictive model can run on the cloud and
generate notifications as needed. In systems such as oil drills and aircraft engines that are run
continuously and generate huge amounts of data, storing all the data on board or transmitting it is
not always viable because of cellular bandwidth and cost limitations. Using an algorithm that
operates on streaming data or on batches of data lets you store and send data only when needed.

Software and System Integration
After you have developed a deployment candidate, you test and validate algorithm performance under
real-life conditions. This phase can include designing tests for verification, software-in-the-loop
testing, or hardware-in-the-loop testing. This phase is critical to validate both the requirements and
the developed algorithm. It often leads to revisions in the requirements, the algorithm, or the
implementation, iterating on earlier phases in the design-V.

Production
Finally, you put the algorithm into the production environment. Often this phase includes
performance monitoring and further iteration on the design requirements and algorithm as you gain
operational experience.

More About
• “Designing Algorithms for Condition Monitoring and Predictive Maintenance”
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Diagnostic Feature Designer

• “Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer”
on page 7-2

• “Prepare Matrix Data for Diagnostic Feature Designer” on page 7-11
• “Interpret Feature Histograms in Diagnostic Feature Designer” on page 7-14
• “Organize System Data for Diagnostic Feature Designer” on page 7-20
• “Analyze and Select Features for Pump Diagnostics” on page 7-25
• “Isolate a Shaft Fault Using Diagnostic Feature Designer” on page 7-40
• “Perform Prognostic Feature Ranking for a Degrading System Using Diagnostic Feature Designer”

on page 7-59
• “Automatic Feature Extraction Using Generated MATLAB Code” on page 7-80
• “Generate a MATLAB Function in Diagnostic Feature Designer” on page 7-87
• “Apply Generated MATLAB Function to Expanded Data Set” on page 7-93
• “Anatomy of App-Generated MATLAB Code” on page 7-106
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Explore Ensemble Data and Compare Features Using
Diagnostic Feature Designer

The Diagnostic Feature Designer app allows you to accomplish the feature design portion of the
predictive maintenance workflow using a multifunction graphical interface. You design and compare
features interactively. Then, determine which features are best at discriminating between data from
different groups, such as data from nominal systems and from faulty systems. If you have run-to-
failure data, you can also evaluate which features are best for determining remaining useful life
(RUL). The most effective features ultimately become your condition indicators for fault diagnosis and
prognostics.

The following figure illustrates the relationship between the predictive maintenance workflow and the
Diagnostic Feature Designer functions.

The app operates on ensemble data. Ensemble data contains data measurements from multiple
members such as multiple similar machines, or a single machine whose data is segmented by time
interval such as days or years. The data can also include condition variables, which describe the fault
condition or operating condition of the ensemble member. Often condition variables have defined
values known as labels. For more information on data ensembles, see “Data Ensembles for Condition
Monitoring and Predictive Maintenance” on page 1-2.

The in-app workflow starts at the point of data import with data that is already:

• Preprocessed with cleanup functions
• Organized into either individual data files or a single ensemble data file that contains or

references all ensemble members

Within Diagnostic Feature Designer, the workflow includes the steps required to further process
your data, extract features from your data, and rank those features by effectiveness. The workflow
concludes with selecting the most effective features and exporting those features to the
Classification Learner app for model training.

The workflow includes an optional MATLAB code generation step. When you generate code that
captures the calculations for the features you choose, you can automate those calculations for a
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larger set of measurement data that includes more members, such as similar machines from different
factories. The resulting feature set provides additional training inputs for Classification Learner.

Perform Predictive Maintenance Tasks with Diagnostic Feature
Designer
The following image illustrates the basic functionalities of Diagnostic Feature Designer. Interact
with your data and your results by using controls in tabs such as the Feature Designer tab that is
shown in the figure. View your imported and derived variables, features, and datasets in the Data
Browser. Visualize your results in the plotting area.

Convert Imported Data into Unified Ensemble Dataset
The first step in using the app is to import your data. You can import data from tables, timetables, or
matrices. You can also import an ensemble datastore that contains information that allows the app to
interact with external data files. Your files can contain actual or simulated time-domain measurement
data, spectral models, variable names, condition and operational variables, and features you
generated previously. Diagnostic Feature Designer combines all your member data into a single
ensemble dataset. In this dataset, each variable is a collective signal or model that contains all the
individual member values.
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To use the same data in multiple sessions, you can save your initial session. The session data includes
both imported variables and any additional variables and features you have computed. You can then
open that session at any time when using the app.

For information on preparing your data for the import process, see:

• “Organize System Data for Diagnostic Feature Designer” on page 7-20
• “Prepare Matrix Data for Diagnostic Feature Designer” on page 7-11
• “Generate and Use Simulated Data Ensemble” on page 1-10
• “File Ensemble Datastore With Measured Data” on page 1-17

For information on the import process itself, see “Import and Visualize Ensemble Data in Diagnostic
Feature Designer” .

Visualize Data
To plot the signals or spectra that you import or that you generate with the processing tools, select
from the plot gallery. The figure here illustrates a typical signal trace. Interactive plotting tools allow
you to pan, zoom, display peak locations and distances between peaks, and show statistical variation
within the ensemble. Grouping data by condition label in plots allows you to clearly see whether
member data comes from, for example, nominal or faulty systems.

For information on plotting in the app, see “Import and Visualize Ensemble Data in Diagnostic
Feature Designer”.
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Compute New Variables
To explore your data and to prepare your data for feature extraction, use the data processing tools.
Every time you apply a processing tool, the app creates a new derived variable with a name that
contains both the source variable and the processing you used. For example, if you compute a power
spectrum from the variable Vibration/Data, the new derived variable name is Vibration_ps/
Data.

Data processing options for all signals include ensemble-level statistics, signal residues, filtering, and
power and order spectrum. You can also interpolate your data to a uniform grid if your member
samples do not occur at the same independent variable intervals.

If your data comes from rotating machinery, you can perform time-synchronous signal averaging
(TSA) based on your tachometer outputs or your nominal rpm. From the TSA signal, you can generate
additional signals such as TSA residual and difference signals. These TSA-derived signals isolate
physical components within your system by retaining or discarding harmonics and sidebands, and
they are the basis for many of the gear condition features.

Many of the processing options can be used independently. Some options can or must be performed
as a sequence. In addition to rotating machinery and TSA signals previously discussed, another
example is residue generation for any signal. You can:

1 Use Ensemble Statistics to generate single-member statistical variables such as mean and max
that characterize the entire ensemble.

2 Use Subtract Reference to generate residue signals for each member by subtracting the
ensemble-level values. These residues represent the variation among signals, and more clearly
reveal signals that deviate from the rest of the ensemble.

3 Use these residual signals as the source for additional processing options or for feature
generation.

For information on data processing options in the app, see “Process Data and Explore Features in
Diagnostic Feature Designer”.

Computation Options

The app provides options for signal segmentation, local in-app buffering of ensemble datastore
values, and parallel processing.

By default, the app processes your entire signal in one operation. You can also segment the signals
and process the individual frames. Frame-based processing is particularly useful if the members in
your ensemble exhibit nonstationary, time-varying, or periodic behavior. Frame-based processing also
supports prognostic ranking, since it provides a time history of feature values.

When you import your member data into the app, the app creates a local ensemble, and writes new
variables and features to that ensemble. When instead you import an ensemble datastore object, the
app by default interacts with the external files listed in the object. If you do not want the app to write
to your external files, you can choose to have the app create a local ensemble and write results there.
After you have the results you want, you can export the ensemble to the MATLAB workspace. From
there, you can write the variables and features you want to retain back into your source files using
command-line ensemble datastore functions. For more information on ensemble datastores, see “Data
Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2.
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If you have the Parallel Computing Toolbox™, you can use parallel processing. Because the app often
performs the same processing independently on all members, parallel processing can significantly
improve computation time.

Generate Features
From your original and derived signals and spectra, you can compute features and assess their
effectiveness. You might already know which features are likely to work best, or you might want to
experiment with all the applicable features. Available features range from general signal statistics to
specialized gear condition metrics that can identify the precise location of faults, and nonlinear
features that highlight chaotic behavior.

Any time you compute a set of features, the app adds them to the feature table and generates a
histogram of the distribution of values across the members. The figure here illustrates histograms for
two features. The histograms illustrate how well each feature differentiates data. For example,
suppose that your condition variable is faultCode with states 0 for nominal-system data and 1 for
faulty-system data, as in the figure. You can see in the histogram whether the nominal and faulty
groupings result in distinct or intermixed histogram bins. You can view all the feature histograms at
once or select which features the app includes in the histogram plot set.

To compare the values of all your features together, use the feature table view and the feature trace
plot. The feature table view displays a table of all the feature values of all the ensemble members.
The feature trace plots these values. This plot visualizes the divergence of feature values within your
ensemble and allows you to identify the specific member that a feature value represents.
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For information on feature generation and histogram interpretation in the app, see:

• “Process Data and Explore Features in Diagnostic Feature Designer”
• “Interpret Feature Histograms in Diagnostic Feature Designer” on page 7-14

Rank Features
Histograms allow you to perform an initial assessment of feature effectiveness. To perform a more
rigorous relative assessment, you can rank your features using specialized statistical methods. The
app provides two types of ranking — classification ranking and prognostic ranking.

• Classification ranking methods score and rank features by the ability to discriminate between or
among data groups, such as between nominal and faulty behavior. Classification ranking requires
condition variables that contain the labels that characterize the data groups

• Prognostic ranking methods score and rank features based on the ability to track degradation in
order to enable prediction of remaining useful life (RUL). Prognostic ranking requires real or
simulated run-to-failure or fault-progression data and does not use condition variables.

The figure here illustrates classification ranking results. You can try multiple ranking methods and
view the results from each method together. The ranking results allow you to eliminate ineffective
features and to evaluate the ranking effects of parameter adjustments when computing derived
variables or features.
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For information on feature ranking, see:

• “Rank and Export Features in Diagnostic Feature Designer”
• Diagnostic Feature Designer Feature Ranking Tab and Ranking Technique sections
• “Perform Prognostic Feature Ranking for a Degrading System Using Diagnostic Feature Designer”

on page 7-59

Export Features to the Classification Learner
After you have defined your set of candidate features, you can export them to the Classification
Learner app in the Statistics and Machine Learning Toolbox. Classification Learner trains models
to classify data by using automated methods to test different types of models with a feature set. In
doing so, Classification Learner determines the best model and the most effective features. For
predictive maintenance, the goal of using the Classification Learner is to select and train a model
that discriminates between data from healthy and from faulty systems. You can incorporate this
model into an algorithm for fault detection and prediction. For an example of exporting from the app
into Classification Learner, see “Analyze and Select Features for Pump Diagnostics” on page 7-25.

You can also export your features and datasets to the MATLAB workspace. Doing so allows you to
visualize and process your original and derived ensemble data using command-line functions or other
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apps. At the command line, you can also save features and variables that you select into files,
including files referenced in an ensemble datastore.

For information on export, see “Rank and Export Features in Diagnostic Feature Designer”.

Generate MATLAB Code for Your Features
Generate code for the features you select so that you can automate the feature computations using a
MATLAB function. For instance, suppose you have a large input data set with many members, but for
faster app response, you want to use a subset of that data when you first explore possible features
interactively. After you identify your most effective features using the app, you can generate code,
and then apply the same computations for those features to the all-member data set using the
generated code. The larger member set lets you provide more samples as training inputs to
Classification Learner.

function [featureTable,outputTable] = diagnosticFeatures(inputData)
%DIAGNOSTICFEATURES recreates results in Diagnostic Feature Designer.
%

For more information, see:

• “Automatic Feature Extraction Using Generated MATLAB Code” on page 7-80
• “Generate a MATLAB Function in Diagnostic Feature Designer” on page 7-87
• “Apply Generated MATLAB Function to Expanded Data Set” on page 7-93
• “Anatomy of App-Generated MATLAB Code” on page 7-106

See Also
Diagnostic Feature Designer

See Also

Related Examples
• “Import and Visualize Ensemble Data in Diagnostic Feature Designer”
• “Process Data and Explore Features in Diagnostic Feature Designer”
• “Rank and Export Features in Diagnostic Feature Designer”
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• “Isolate a Shaft Fault Using Diagnostic Feature Designer” on page 7-40

More About
• “Organize System Data for Diagnostic Feature Designer” on page 7-20
• “Data Preprocessing for Condition Monitoring and Predictive Maintenance” on page 2-2
• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
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Prepare Matrix Data for Diagnostic Feature Designer
This example shows how to prepare matrix data for import into Diagnostic Feature Designer. You
step first through conversion of a single-member matrix and its associated fault code into a table.
Then, you combine multiple tables into a single ensemble table that you can import as a multimember
ensemble.

Diagnostic Feature Designer accepts member data that is contained in individual numeric
matrices. However, member tables provide more flexibility and ease of use.

• With a table, you can embed your measurements as signal variables, each containing both an
independent variable and one or more data variables. With a matrix, you can specify only one
independent variable that applies to all the columns of data. The app can more easily interpret
table data.

• With a table, you can specify informative variable names. With a matrix, the app uses column
numbers to identify data vectors.

• With a table, you can include scalar information for each member, such as condition variables or
features. With a matrix, you cannot combine scalar information with signal information. This
limitation means that you cannot group data by label in the app, and cannot assess feature
effectiveness in separating, say, healthy data from unhealthy data.

An ensemble table is even easier to use, because it combines all member tables into one dataset. To
import an ensemble table, you import just one item, instead of needing to select multiple items.

Load Member Matrices and Fault Codes

Load the member data and fault code data. The member data dmatall consists of four sets of
timestamped vibration and tachometer measurements taken over an interval of 30 seconds. These
member matrices are stacked together in a 3-D matrix. An independent fault code vector fc indicates
whether each member is from a healthy (0) or unhealthy (1) system.

Initialize tv_ensemble table, which ultimately includes both the time-tagged data and the fault
code for each member.

load tvmatrixmembers dmatall fc
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Convert a Matrix to a Table

Start by converting a single member matrix to a table that contains timetables for the measurement
signals and the member fault code. Extract the first member matrix from dmatall.

memmat = dmatall(:,:,1);

The first two columns of memmat contain the measured vibration signal. The third and fourth contain
the measured tacho signal. Each signal consists of an independent variable (time) and a data variable
(vibration or tacho measurement). Extract these signals into independent matrices vibmat and
tachmat .

vibmat = memmat(:,[1 2]);
tachmat = memmat(:,[3 4]);

Convert each signal into a timetable. First, separate each signal into its time and data components.
Use the function seconds to convert the timestamps into duration variables for the timetable. Then
input the signal components into array2timetable to convert the signals into timetables vibtt
and tachtt. Assign the variable name Data to the data column. The timetable automatically assigns
the name Time to the time column.

vibtime = seconds(vibmat(:,1));
vibdata = vibmat(:,2);
tachtime = seconds(tachmat(:,1));
tachdata = tachmat(:,2);
vibtt = array2timetable(vibdata,'RowTimes',vibtime,'VariableNames',{'Data'});
tachtt = array2timetable(tachdata,'RowTimes',tachtime,'VariableNames',{'Data'});

Extract the fault code faultcode from the fault code vector fc.

faultcode = fc(1);

Assemble the member table that contains the two timetables, the fault code scalar, and descriptive
variable names.

memtable = table({vibtt},{tachtt},faultcode,'VariableNames',{'Vibration','Tacho','FaultCode'});

You now have a member table that you can insert into an ensemble table that contains multiple
member tables. Initialize the ensemble table and insert the first member.

tv_ensemble_table = table();
tv_ensemble_table(1,:) = memtable

tv_ensemble_table=1×3 table
         Vibration                Tacho           FaultCode
    ___________________    ___________________    _________

    {30001x1 timetable}    {30001x1 timetable}        1    

Convert Multiple Member Matrices into Ensemble Table

You can repeat the same processing steps on all member matrices to create the full ensemble table.
You can also automate the processing steps for each matrix. To do so, first initialize an ensemble
table. Then loop through the member matrices to convert the members to tables and insert them into
the ensemble table.

Initialize tv_ensemble_table.
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tv_ensemble_table = table();

Loop through the conversion and insertion sequence

for idx = 1:size(dmatall,3)
    vibmat = dmatall(:,[1 2],idx);
    tachmat = dmatall(:,[3 4],idx);
vibtt = array2timetable(vibmat(:,2),'RowTimes',seconds(vibmat(:,1)),'VariableNames',{'Data'});
tachtt = array2timetable(tachmat(:,2),'RowTimes',seconds(tachmat(:,1)),'VariableNames',{'Data'});
tv_member = table({vibtt},{tachtt},fc(idx),'VariableNames',{'Vibration','Tacho','FaultCode'});
tv_ensemble_table(idx,:) = tv_member;
end

You have created a single ensemble table. Each row represents one member, and each member
consists of two timetables representing the vibration and tachometer signals, and the scalar fault
code.

tv_ensemble_table

tv_ensemble_table=4×3 table
         Vibration                Tacho           FaultCode
    ___________________    ___________________    _________

    {30001x1 timetable}    {30001x1 timetable}        1    
    {30001x1 timetable}    {30001x1 timetable}        0    
    {30001x1 timetable}    {30001x1 timetable}        1    
    {30001x1 timetable}    {30001x1 timetable}        0    

You can import this ensemble table into Diagnostic Feature Designer using the Import Multi-
Member Ensemble option.

See Also
Diagnostic Feature Designer | array2timetable | table | timetable

More About
• “Organize System Data for Diagnostic Feature Designer” on page 7-20
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
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Interpret Feature Histograms in Diagnostic Feature Designer
A feature is effective when it clearly separates data groups with different condition variable labels.
Diagnostic Feature Designer provides various feature options, but the most effective features
depend on your data and the systems and conditions your data represents. To assess how effective a
feature is, you can evaluate the feature histogram. The histogram plot visualizes the separation
between labeled groups. To do so, the histogram bins the data distribution and uses color to identify
the label groups within each bin. You can customize the histogram to enhance the visualization and
highlight information in features of interest. You can also view numerical information about the
separation between group distributions.

The following figure shows separation visualization. These examples have a relatively small sample
size, which exaggerates differences.

In both plots, the two-state condition code is faultCode. A value of 0 (blue) indicates a healthy
system and a value of 1 (orange) indicates a faulty system. The histograms represent the crest factor
and the kurtosis of the Vibration signal.

The crest factor histogram shows that:

• All the healthy system feature values fall within the range of the first bin.
• Most of the faulty system values fall into the remaining three bins.
• The first bin also contains some data from the faulty system, but the amount is small relative to

the healthy system data.

For this case, the histogram indicates that the crest factor feature distinguishes between healthy and
faulty behavior well, but not completely.

By contrast, the kurtosis histogram shows that:

• Data with values in the range of the first bin is always faulty.
• Data within the range of the other bins come from both healthy and faulty groups. The fault state

is ambiguous in these regions.
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From these two histograms, you can infer that the crest factor feature is more effective than the
kurtosis feature.

The app provides interactive tools for customizing the histogram. For example, you can increase the
histogram resolution by changing bin width, changing the condition variable that specifies the
groups, or modifying the normalization that the histogram applies. For more information on
customizing histograms in the app, see “Generate and Customize Feature Histograms” on page 7-
17.

Interpret Feature Histograms for Multiclass Condition Variables
If your condition variable has more than two states, or classes, the resulting histograms might be
harder to interpret on their own because of the additional color combinations. For example, suppose
that your fault code can represent two independent fault states in addition to the healthy state,
fault1 and fault2. The following figure shows histograms similar to the previous histograms but
corresponding to such a three-class condition variable.

Get additional information on feature effectiveness by viewing numerical group distances. The Show
Group Distance option provides a value, the KS statistic, for each combination of condition variable
classes. Using the two-sample Kolmogorov-Smirnov test, the KS statistic indicates how well separated
the cumulative distribution functions of the distributions of the two classes are.

The following table shows the group distances corresponding to the previous histograms.
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The KS statistic indicates the separation between every pairing of the faultCode values. The
statistic value ranges from 0 to 1, where 0 is no separation between the distributions, and 1 is
complete separation.

For the crest factor feature as with the two-class faultCode, differentiation between healthy
fault0 and faulty fault1 data is strong, with a KS statistic of 1. Differentiation is also strong
between fault1 and fault2 data. However, differentiation between fault0 and fault2 data is
relatively poor.

For the kurtosis feature, differentiation between pairs in all pairings is relatively poor.

For more information on the KS statistic, see kstest2.
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Generate and Customize Feature Histograms
To generate a set of feature histograms from a feature table:

• Select the feature table in the Feature Tables section of the data browser.
• Click the Histogram icon in the plot gallery.

To optimize separation visualization, customize the histograms. The Histogram tab provides
parameters that allow you to modify the histogram to enhance interpretation.

Select Features

By default, the app plots histograms for all your features, and displays them in reverse-alphabetical
order. If you want to focus on a smaller set of features, click Select Features.

Group Data by a Condition Variable

You can group data in the histogram set for any condition variable you have imported. This condition
variable might indicate system health. The variable might also be an operational condition such as
temperature or machine mode. To select a condition variable to group by color code, select a variable
from Group By.

Display the Group Separation Distance

To display the group separation distance, or KS Statistic, that was discussed in “Interpret Feature
Histograms for Multiclass Condition Variables” on page 7-15, click Show Group Distance. This
option brings up a table providing the group separation value for each pairing of condition variable
values. In the window, choose which feature you want to examine.

Modify the Bin Settings

By default, the app determines the bin size automatically. Override the automation by typing a
different value for bin width or selecting an alternate binning method. The bin settings apply to all
the histograms for the feature table.

The bin settings for bin width, binning method, and number of bins are not independent. The
algorithm uses an order of precedence to determine what to use:
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• The Binning Method is the default driver for the bin width.
• A Bin Width specification overrides the Binning Method.
• The bin width and the independent Bin Limits drive the number of bins. A Number of Bins
specification has an effect only when there is no data grouping.

Modify the Binning Algorithm

By default, Diagnostic Feature Designer uses an automatic binning algorithm that returns bins
with a uniform bin width. The algorithm chooses the bin settings to cover the data range and reveal
the underlying shape of the distribution. To change the binning algorithm, choose from the Binning
Method menu.

For information on the binning algorithms, see the ‘BinMethod’ description in histogram.

Increase Resolution by Specifying Bin Width

Increase the resolution of your data by specifying a width that is narrower than what the ‘auto’
setting provides for the feature you are examining. For example, the following figure repeats the
earlier histograms showing separation of data for two fault code values and two features. For the
crest factor, the first bin has intermixed healthy and degraded data.

The bin width for the Crest Factor feature is 0.1. If you decrease the bin width to 0.05, the histogram
changes as shown here.
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Now the healthy crest factor data is isolated to the first bin, and the remaining bins contain only
unhealthy data. However, you have lost resolution on the kurtosis histogram, because a specified bin
width applies to all features.

Exclude Outlying Data by Changing Bin Limits

If you are interested in only a portion of the feature distribution, use Bin Limits to exclude data
outside of the area of interest. Enter the desired limits in the form [lower upper]. This selection
does not affect the KS statistic calculation in the group distance table.

Change the Normalization Method

The default histograms use probability for the y axis, with a corresponding range from 0 to 1 for all
features. Viewing multiple histograms on the same scale makes it easier to visually compare them.
Choose other axis settings from the Normalization menu. These methods include raw counts and
statistical metrics such as CDF.

See Also
Diagnostic Feature Designer | histogram | kstest2

More About
• “Process Data and Explore Features in Diagnostic Feature Designer”
• “Isolate a Shaft Fault Using Diagnostic Feature Designer” on page 7-40
• “Analyze and Select Features for Pump Diagnostics” on page 7-25
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Organize System Data for Diagnostic Feature Designer
The Diagnostic Feature Designer app allows you to interactively analyze data and develop features
that can distinguish between data from healthy systems and degraded systems. The app operates on
a collection of measurement data and information from set of similar systems such as machines. To
use the app, you must first organize your data into a form that the app can import. One way to
organize your data is with numerical matrices, which can capture all your measurement data.
However, you can also use more flexible formats such as tables, which allow you to incorporate
additional information such as health condition and operating conditions. With this information, you
can explore features within the app and assess feature ability to distinguish between different specific
conditions.

Data Ensembles
Data analysis is the heart of any condition monitoring and predictive maintenance activity.

The data can come from measurements on systems using sensors such as accelerometers, pressure
gauges, thermometers, altimeters, voltmeters, and tachometers. For instance, you might have access
to measured data from:

• Normal system operation
• The system operating in a faulty condition
• Lifetime record of system operation (run-to-failure data)

For algorithm design, you can also use simulated data generated by running a Simulink model of your
system under various operating and fault conditions.

Whether using measured data, generated data, or both, you frequently have many signals, ranging
over a time span or multiple time spans. You might also have signals from many machines (for
example, measurements from a number of separate engines all manufactured to the same
specifications). And you might have data representing both healthy operation and fault conditions.
Evaluating effective features for predictive maintenance requires organizing and analyzing this data
while keeping track of the systems and conditions the data represents.

Data Ensembles

The main unit for organizing and managing multifaceted data sets in Predictive Maintenance Toolbox
is the data ensemble. An ensemble is a collection of data sets, created by measuring or simulating a
system under varying conditions.

For example, consider a transmission gear box system in which you have an accelerometer to
measure vibration and a tachometer to measure the engine shaft rotation. Suppose that you run the
engine for five minutes and record the measured signals as a function of time. You also record the
engine age, measured in miles driven. Those measurements yield the following data set.
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Now suppose that you have a fleet of many identical engines, and you record data from all of them.
Doing so yields a family of data sets.

This family of data sets is an ensemble, and each row in the ensemble is a member of the ensemble.

The members in an ensemble are related in that they contain the same data variables. For instance,
in the illustrated ensemble, all members include the same four variables: an engine identifier, the
vibration and tachometer signals, and the engine age. In that example, each member corresponds to
a different machine. Your ensemble might also include that set of data variables recorded from the
same machine at different times. For instance, the following illustration shows an ensemble that
includes multiple data sets from the same engine recorded as the engine ages.

In practice, the data for each ensemble member is typically stored in a separate data file. Thus, for
instance, you might have one file containing the data for engine 01 at 9,500 miles, another file
containing the data for engine 01 at 21,250 miles, and so on.
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Ensemble Variables

The variables in your ensemble serve different purposes, and accordingly can be grouped into several
types:

• Data variables (DV) — The main content of the ensemble members, including measured data and
derived data that you use for analysis and development of predictive maintenance algorithms. For
example, in the illustrated gear-box ensembles, Vibration and Tachometer are the data
variables. Data variables can also include derived values, such as the mean value of a signal, or
the frequency of the peak magnitude in a signal spectrum.

• Independent variables (IV) — The variables that identify or order the members in an ensemble,
such as timestamps, number of operating hours, or machine identifiers. In the ensemble of
measured gear-box data, Age is an independent variable.

• Condition variables (CV) — The variables that describe the fault condition or operating condition
of the ensemble member. Condition variables can record the presence or absence of a fault state,
or other operating conditions such as ambient temperature. In the ensemble gear-box data,
sensor health might be a condition variable whose state is known for each engine. Condition
variables can also be derived values, such as a single scalar value that encodes multiple fault and
operating conditions.

Data variables and independent variables typically have many elements. Condition variables are often
scalars. In the app, condition variables must be scalars.

Representing Ensemble Data for the App
You can use one of three general approaches to combine your ensemble data and import it into the
app. All these approaches require that your ensemble members all contain the same variables.

Create Individual Member Datasets

Import your data in the form of individual datasets — one for each member — and let the app
combine these datasets into an ensemble.

This approach requires the least setup before importing the data, but it requires you to select each
dataset individually during the import process. This approach is practical only when you have a small
number of datasets. If you want to update the ensemble with new members, you must import all
members again.
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Create an Ensemble Dataset

Import a single ensemble dataset that you create from your member datasets. Each row of your
ensemble dataset represents one of your members.

This approach requires more setup before importing the data, but it requires you to select only one
item during the import process. It is more practical than the individual approach when you have
larger member sets. if you want to update the ensemble with new members, you can do so outside of
the app by adding to your existing table. Then import the updated table.

For an example on creating an ensemble dataset from individual member matrices, see “Prepare
Matrix Data for Diagnostic Feature Designer” on page 7-11

Create an Ensemble Datastore Object

Import an ensemble datastore object that contains only the names and paths of member files rather
than importing the data itself. This object also includes the information needed for the app to interact
with the external files.

This approach is best when you have large amounts of data and variables. Ensemble datastores can
help you work with such data, whether it is stored locally or in a remote location such as cloud
storage using Amazon S3 (Simple Storage Service), Windows Azure Blob Storage, or Hadoop
Distributed File System (HDFS).

Typically, when you begin exploring your data in the app, you want to import a relatively small
number of members and variables. However, later, you might want to test your conclusions on feature
effectiveness by bringing in a larger sample size. The ensemble datastore is one method for handling
the larger amount of data, especially if the data size exceeds memory limitations for MATLAB.

For more information on ensemble datastore objects, see “Data Ensembles for Condition Monitoring
and Predictive Maintenance” on page 1-2.

Data Types and Constraints for Dataset Import
The app accepts various data types, including numerical matrices and tables that contain condition-
variable scalars and embedded measurement timetables. The app bases the interpretation of the
imported data on whether you select Import > Import Single-Member Datasets (individual
datasets) or Import > Import Multi-Member Ensemble (ensemble dataset or ensemble datastore).

Before importing your data, it must already be clean, with preprocessing such as outlier and missing-
value removal. For more information, see “Data Preprocessing for Condition Monitoring and
Predictive Maintenance” on page 2-2.

Import Single-Member Datasets

This option applies to the member datasets approach in the preceding figure. The app accepts
individual member table arrays, timetable arrays, or numeric matrices, each containing the same
independent variables, data variables, and condition variables.

• Data variables within these datasets can contain timetables, tables, cell arrays, or numeric arrays.
• All independent time variables must be of the same type — either all double or all duration or all

datetime. If your original data was uniformly sampled, and timestamps were not recorded, the
app prompts you to construct a uniform timeline during the import process.
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• Condition variables in a member dataset contain a single scalar. The form of the scalar can be
numeric, string, cell, or categorical. You can import condition variables with your data only if your
member datasets are tables, timetables, or cell arrays. Matrices cannot accommodate condition
variables.

• Matrices can contain only one independent variable, but can have any number of data variables
tied to that independent variable. Matrices cannot accommodate variable names.

Import Multi-Member Ensemble

This option applies to the Ensemble Dataset and Ensemble Datastore approach in the preceding
figure. The app accepts:

• An ensemble table containing table arrays or matrices. Table rows represent individual
members.

• An ensemble cell array containing tables or matrices. Cell array rows represent individual
members.

• An ensemble datastore object that contains the information necessary to interact with files stored
externally to the app. The external files have fewer format restrictions than imported datasets.
The read function referenced in the ensemble datastore object can adapt to the format of the files.

The members in the collective dataset must all contain the same independent variables, data
variables, and condition variables.

• All independent time variables must be of the same type — either all double or all duration or all
datetime. If your original data was uniformly sampled, and timestamps were not recorded, the
app prompts you to construct a uniform timeline during the import process.

• Embedded matrices can contain only one independent variable, but can have any number of data
variables tied to that independent variable.

• Condition variables in a member dataset contain a single scalar. The form of the scalar can be
numeric, string, cell, or categorical.

See Also
fileEnsembleDatastore | simulationEnsembleDatastore | table | timetable

More About
• “Prepare Matrix Data for Diagnostic Feature Designer” on page 7-11
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
• “File Ensemble Datastore With Measured Data” on page 1-17
• “Generate and Use Simulated Data Ensemble” on page 1-10
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Analyze and Select Features for Pump Diagnostics
This example shows how to use the Diagnostic Feature Designer app to analyze and select features
to diagnose faults in a triplex reciprocating pump.

The example uses simulated pump fault data generated by the “Multi-Class Fault Detection Using
Simulated Data” on page 1-46 example. The data has been preprocessed to remove the pump startup
transients.

Open Diagnostic Feature Designer

Load the triplex pump fault data. The pump data contains 240 flow and pressure measurements for
different fault conditions. There are three fault types (leaking pump cylinder, blocked pump inlet,
increased pump bearing friction). The measurements cover conditions where none, one, or multiple
faults are present. The data is collected in a table where each row is a different measurement.

load('savedPumpData')
pumpData

pumpData=240×3 table
           flow                pressure         faultCode
    __________________    __________________    _________

    {1201x1 timetable}    {1201x1 timetable}       0     
    {1201x1 timetable}    {1201x1 timetable}       0     
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       0     
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       100   
    {1201x1 timetable}    {1201x1 timetable}       100   
      ⋮

Open Diagnostic Feature Designer by using the diagnosticFeatureDesigner command. Import
the pump data into the app. The data is organized as a multi-member ensemble, so use that option for
import.
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Once we specify the variable we want to import as pumpData, we can then review the various signals
we are importing. Ensure that the faultCode variable is a condition variable. Condition variables
denote the presence or absence of a fault and are used by the app for grouping and classification

Plot Data and Group by Fault Code

Plot the flow signal by selecting flow from the Signals & Spectra section of the data browser and
clicking Signal Trace in the plot gallery. Plot the pressure signal the same way.
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These plots show the pressure and flow signals for all 240 members in the dataset. You can click the
Signal Trace tab and select group by fault code to display signals with the same fault code in the
same color. Grouping signals in this way can help you to quickly determine if there are any clear
differences between signals of different fault types. In this case, the measured signals do not show
any clear differences for different fault codes.
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Extract Time Domain Features

As the measured signals do not show any differences for different fault conditions, the next step is to
extract time-domain features such as signal mean and standard deviation from the signal. To open the
dialog box shown here, select Time-Domain Features and then Signal Features. Select the
features you would like to extract and click OK. For now, clear the Plot results check box. We will
plot results later to see if the features help distinguish different fault conditions. Repeat this process
for the pressure signal by changing the signal selected at the top of the dialog box.

7 Diagnostic Feature Designer

7-28



Extract Frequency Domain Features

A reciprocating pump uses a drive shaft and cylinders to pump fluid. Because of the mechanical
construction of the pump, we expect there to be cyclic fluctuations in the pump flow and pressure.
For example, zoom into a section of the flow signals using the signal panner below the signal trace
plot.
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Computing the frequency spectrum of the flow will highlight the cyclic nature of the flow signal and
could give better insight into how the flow signal changes under different fault conditions. Estimate
the frequency spectra using the autoregressive method. This method fits an autoregressive model of
the prescribed order to the data, and then computes the spectrum of that estimated model. This
approach reduces any overfitting to the raw data signal. In this case specify a model order of 20.
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Plotting the computed spectra on a linear scale clearly shows resonant peaks. Grouping by fault code
highlights how the spectra change for different fault conditions.
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Perform the same computations for the pressure signal as the results will provide additional features
to help distinguish different fault conditions.

We can now compute spectral features such as peaks, modal coefficients, and band power. We extract
these features in a smaller band of frequencies between 25-250 Hz as the peaks after 250 Hz are
smaller. Note that we are extracting 5 spectral peaks for each signal. For now, clear the Plot results
check box. We will plot results later to see if the features help distinguish different fault conditions.
Repeat this process for the pressure signal by changing the signal selected at the top of the dialog
box.
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View Features

All the features we have extracted have been collected in a table shown in the Feature Tables
browser. To view the computed feature data, select FeatureTable1 from the data browser and click
Feature Table View in the plot gallery. The fault code is also displayed in the feature table view as
the rightmost column in the table. As more features are computed, more columns get appended to the
table.
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You can see the distributions of the feature values for different condition variable values, i.e. fault
types, by viewing the feature table as a histogram. Click Histogram in the plot gallery to create a
histogram plot. Use the next and previous buttons to show histograms for different features.
Histogram plots grouped by fault code can help to determine if certain features are strong
differentiators between fault types. If they are strong differentiators, their distributions will be more
distant from each other. For the triplex pump data, the feature distributions tend to overlap and there
are no features that can clearly be used to identify faults. The next section looks at using automated
ranking to find which features are more useful for fault prediction.
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Rank and Export Features

From the Feature Designer tab, click Rank Features and select FeatureTable1. The app gathers
all the feature data and ranks the features based on a metric such as ANOVA. The features are then
listed in terms of importance based on the metric value. In this case, we can see that the RMS value
for the flow signal and the RMS and mean values for the pressure signal are the features that most
strongly distinguish different fault types from each other.
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After we have ranked our features in terms of importance, the next step is to export them so that we
can train a classification model based on these features. Click Export, select Export to
Classification Learner, and select the features you want to use for classification. In this case, we
will export all the features that have a One-way ANOVA metric > 1, i.e., all the features up to and
including pressure_ps_spec/Data_Zeta1. The features are then sent to Classification Learner
and can be used to design a classifier to identify different faults.
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In Classification Learner, select 5-fold cross validation and start the session.
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From Classification Learner, train all available models. The RUSBoosted trees method has the
highest classification accuracy of 81%. A next step could be to iterate on the features — especially the
spectral features — and perhaps to modify spectral computation method, change the bandwidth, or
use different frequency peaks to improve the classification accuracy.
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Diagnose Triplex Pump Faults

This example showed how to use Diagnostic Feature Designer to analyze and select features and
create a classifier to diagnose faults in a triplex reciprocating pump.

See Also
Classification Learner | Diagnostic Feature Designer

More About
• “Multi-Class Fault Detection Using Simulated Data” on page 1-46
• “Organize System Data for Diagnostic Feature Designer” on page 7-20
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
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Isolate a Shaft Fault Using Diagnostic Feature Designer
This example shows how to isolate a shaft fault from simulated measurement data for machines with
varying rotation speeds and develop features that can help detect the fault.

The example assumes that you are already familiar with basic operations with the app. For a tutorial
on using the app, see “Identify Condition Indicators for Predictive Maintenance Algorithm Design”.

Model Description
The following figure illustrates a drivetrain with six gears. The motor for the drivetrain is fitted with a
vibration sensor and a tachometer. In this drivetrain:

• Gear 1 on the motor shaft meshes with gear 2 with a gear ratio of 17:1.
• The final gear ratio, or the ratio between gears 1 and 2 and gears 3 and 4, is 51:1.
• Gear 5, also on the motor shaft, meshes with gear 6 with a gear ratio of 10:1.

Twenty simulated machines use this drivetrain. Each machine operates with a nominal rotation speed
within 1 percent of the design rotation speed of 1800 rpm. Therefore, the nominal rotation speed for
each machine ranges between 1782 rpm and 1818 rpm.

Ten of the machines include a fault developing on the shaft of gear 6.

Import and Examine Measurement Data
To start, load the data into your MATLAB workspace and open Diagnostic Feature Designer.

load(fullfile(matlabroot, 'toolbox', 'predmaint', 'predmaintdemos', ...
  'motorDrivetrainDiagnosis', 'machineData3'), 'motor_data')
diagnosticFeatureDesigner
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Import the data. To do so, in the Feature Designer tab, select Import > Import Multi-Member
Ensemble and then choose motor_data as your ensemble variable.

Complete the import process in the subsequent dialog boxes by accepting the default configuration
and variables. The ensemble includes two data variables—Signal/vib, which contains the vibration
signal, and Tacho/pulse, which contains the tachometer pulses. The ensemble also includes the
condition variable Health.

In the Data Browser, select both signals and plot them together using Signal Trace.
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Note that the Tacho pulse clusters widen with each pulse because of rotation-speed variation. If the
Tacho pulses are not visible, click Group Signals twice to bring the Tacho signal to the front.

Now group the data by fault condition by selecting Ensemble View Preferences > Group by
"Health". Use the panner to expand a slice of the signal.
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The plot shows small differences in the peaks of the groups, but the signals look similar otherwise.

Perform Time-Synchronous Averaging
Time-synchronous averaging (TSA) averages a signal over one rotation, substantially reducing noise
that is not coherent with the rotation. TSA-filtered signals provide the basis for much rotational-
machinery analysis, including feature generation.

In this example, the rotation speeds vary within 1 percent of the design value. You capture this
variation automatically when you use the Tacho signal for TSA processing.

To compute the TSA signal, select Filtering & Averaging > Time-Synchronous Signal Averaging.
In the dialog box:

• Confirm the selection in Signal.
• In Tacho Information, select Tacho signal and confirm the signal selection.

Select Compute nominal speed (RPM). This option results in the computation of a set of
machine-specific nominal speeds, or operating points, from the Tacho signal. You can use this
information when you perform follow-on processing, such as TSA signal filtering. Since your
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tachometer variable is named Tacho, the app stores these values as the condition variable
Tacho_rpm.

• Accept all other settings.
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The TSA-averaged signals are cleaner than the raw signals. The peak heights are clustered by health
condition, just as they were before, but the plot does not show enough information to indicate the
source of the fault.

Compute TSA Difference Signal
The TSA filtering options in the app all start with a TSA signal and subtract various components from
that signal to produce a filtered signal. Each filtered signal type yields unique features that you can
use to detect specific faults in the gear train. One of these filtered signals is the difference signal. The
TSA difference signal contains the components that remain after you subtract all of the components
that are due to the drivetrain design for components that are not in your area of interest. Specifically,
the TSA difference-signal processing subtracts:

• Shaft frequency and harmonics
• Gear-meshing frequencies and harmonics
• Sidebands at the gear-meshing frequencies and their harmonics

For this example, you are interested in the mesh defect between gear 5 and gear 6. To focus on
signals arising from this defect, filter out signals associated with the other gears. To do so, use the
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successive gear ratios described in the model description as you move down the drivetrain. The ratio
between gears 1 and 2 is 17. The ratio between gears 1/2 and 3/4 is 51. These ratios become your
rotation orders.

To compute the TSA difference signal, select Filtering & Averaging > Filter Time-Synchronous
Averaged Signals. In the dialog box:

• Set Signal to the TSA signal Signal_tsa/vib.
• In Signals to Generate, select Difference signal.
• In Speed Settings, select Nominal rotation speed (RPM) and then Tacho_rpm.
• Confirm that Domain is Order.
• Set Rotation orders to [17 51].

When you group the plotted data by Health, you also see the condition variable Tacho_rpm in the
option list.
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The resulting plot shows a clear oscillation. Group the data by healthy and faulty labels. The
oscillation is present only for the faulty machines. Using the data cursors, you can show that the
period of this oscillation is about 0.0033 seconds. The corresponding frequency of the oscillation is
about 303 Hz or 18,182 rpm. This frequency has roughly a 10:1 ratio with the primary shaft speed of
1800 rpm, and is consistent with the 10:1 gear ratio between gear 5 and gear 6. The difference signal
therefore isolates the source of the simulated fault.
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Isolate the Fault Without a Tachometer Signal
In the preceding sections, you use tachometer pulses to precisely generate TSA signals and
difference signals. If you do not have tachometer information, you can use a constant rpm value to
generate these signals. However, the results are less precise.

See if you can isolate the defect without using the Tacho signal. Compute both the TSA signal and
the difference signal with an ensemble-wide rotation speed of 1800 rpm.

The new TSA signal has the name Signal_tsa_1/vib. As the plot shows, generating a TSA signal
without tachometer information produces a less clear signal then generating a signal with tachometer
information.
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Compute the difference signal using Signal_tsa_1/vib and the Constant rotation speed (RPM)
setting.
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In the resulting plot, you can still see the oscillation for the faulty set of machines, but as with the
TSA signal, the oscillation is much less clear than the previous difference signal. The unaccounted-for
1-percent rpm variation has a significant impact on the results.
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Extract Rotating Machinery Features
Use the TSA and difference signals Signal_tsa/x and Signal_tsa_tsafilt/x_Difference to
compute time-domain rotational machinery features.

To compute these features, select Time-Domain Features > Rotating Machinery Features. In the
dialog box, select the signals to use for TSA signal and Difference signal and then select all the
feature options that use TSA or difference signals.
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The resulting histogram plots indicate good separation between healthy and faulty groups for all
of the TSA-signal-based features, and for FM4 (kurtosis) in the difference-signal-based features.
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Extract Spectral Features
Since the difference signal displays a clear oscillation that is limited to the faulty group, spectral
features are also likely to differentiate well between healthy and faulty groups. To calculate
spectral features, you must first compute a spectral model. To do so, click Spectral Estimation >
Order Spectrum. As before, select your difference signal as Signal and your tachometer signal as
Tacho signal.
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The resulting plot displays the oscillation of the defect as the first peak in the plot at roughly order
10.
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Compute the spectral features by clicking Spectral Features. In the dialog box:

• Confirm the selection for Spectrum.
• Move the order range slider to cover the range from 0 to 200. As you move the slider, the order

spectrum plot incorporates the change.
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The resulting histograms indicate good differentiation between groups for BandPower and PeakAmp.
PeakFreq1 shows a small amount of group overlap.
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Rank Features
Rank the features using the default T-test ranking. To do so, click Rank Features and select
FeatureTable1. The app automatically ranks the features and plots the scores.

• Spectral features BandPower and PeakAmp take the two top places with scores significantly
higher than the other features.

• Rotational features Kurtosis and CrestFactor take the third and fourth places with scores
much lower than the spectral features, but still significantly higher than the remaining features.

• The remaining features are likely not useful for detecting faults of this type.
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Using these high-ranking features, you could now move on to export the features to Classification
Learner for training or to your MATLAB workspace for algorithm incorporation.

See Also
Diagnostic Feature Designer | gearConditionMetrics | tsa | tsadifference

More About
• “Identify Condition Indicators for Predictive Maintenance Algorithm Design”
• “Condition Indicators for Gear Condition Monitoring” on page 3-10
• “Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer” on page 7-2
• “Perform Prognostic Feature Ranking for a Degrading System Using Diagnostic Feature

Designer” on page 7-59
• “Designing Algorithms for Condition Monitoring and Predictive Maintenance”
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Perform Prognostic Feature Ranking for a Degrading System
Using Diagnostic Feature Designer

This example shows how to process and extract features from segmented data that contains evidence
of a worsening shaft fault, and how to perform prognostic ranking to determine which features are
best for determining remaining useful life (RUL). RUL feature development is based on run-to-failure
data rather than conditionally grouped data.

The example assumes that you are already familiar with basic operations with the app. For a tutorial
on using the app, see “Identify Condition Indicators for Predictive Maintenance Algorithm Design”.

Model Description
The following figure illustrates a drivetrain with six gears. The motor for the drivetrain is fitted with a
vibration sensor. The drivetrain has no tachometer. The motor drives a constant rotation speed of
1800 rpm with no variation. In this drivetrain:

• Gear 1 on the motor shaft meshes with gear 2 with a gear ratio of 17:1.
• The final gear ratio, or the ratio between gears 1 and 2 and gears 3 and 4, is 51:1.
• Gear 5, also on the motor shaft, meshes with gear 6 with a gear ratio of 10:1.

Ten simulated machines use this drivetrain. All of the machines have a fault developing on the shaft
of gear 6. This fault becomes worse every day. The rate of the fault progression is fixed for each
machine, but varies over the set of machines.

Data has been recorded during one 0.21 s period each day for 15 days. For each machine, these daily
segments are stored in adjacent positions within a single variable. The timestamps reflect the data
recording time and increase continuously. For instance, if the timestamp on the final sample of day 1
is tf and the sample time is Ts, then the timestamp on the first sample of day 2 is tf + Ts.
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Import and View the Data
To start, load the data into your MATLAB workspace and open Diagnostic Feature Designer.

load(fullfile(matlabroot, 'toolbox', 'predmaint', 'predmaintdemos', ...
  'motorDrivetrainDiagnosis', 'machineDataRUL3'), 'motor_rul3')
diagnosticFeatureDesigner

Import the data. To do so, in the Feature Designer tab, select Import > Import Multi-Member
Ensemble and then choose motor_rul3 as your ensemble variable.

Complete the import process in the subsequent dialog boxes by accepting the default configuration
and variables. The ensemble consists of one data variable Signal/vib, which contains the vibration
signal. There are no condition variables.

View the vibration signal. To do so, in the Data Browser, select the signal and plot it using Signal
Trace. The amplitude of the signal increases continuously as the defect progresses.
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Separate Daily Segments by Frame
When developing features for RUL use, you are interested in tracking the progression of degradation
rather than in isolating specific faults. The time history of a useful RUL feature provides visibility into
the degradation rate, and ultimately enables the projection of time to failure.

Frame-based processing allows you to track the progression of degradation segment by segment.
Small or abrupt changes are captured in the segment that they occur. Segment-based features convey
a more precise record of the degradation than features extracted from the full signal can provide. For
RUL prediction, the progression rate of the degradation is as important as the magnitude of the
defect at a given time.

The data set for each machine in supports segmented processing by providing a segment of data for
each day. Specify frame-based processing so that each of these segments is processed separately.
Since the data has been collected in 0.21 s segments, separate the data for processing into 0.21 s
frames.

Click Computation Options. In the dialog box, set Data Handling Mode to Frame-based. The
data segments are contiguous, so set both the frame size and frame rate to 0.21 seconds.
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Perform Time-Synchronous Averaging
Time-synchronous averaging (TSA) averages a signal over one rotation, substantially reducing noise
that is not coherent with the rotation. TSA-filtered signals provide the basis for much rotational-
machinery analysis, including feature generation.

In this example, the rotation speed is fixed to the same 1800 rpm value for each machine.

To compute the TSA signal, select Filtering & Averaging > Time-Synchronous Signal Averaging.
In the dialog box:

• Confirm the selection in Signal.
• In Tacho Information, select Constant rotation speed (RPM) and set the value to 1800.
• Accept all other settings.
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The app computes the TSA signal for each segment separately, and by default plots the first segment.
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Use the panner to expand the plot to all segments. The plot shows a slightly increasing amplitude.
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Extract Rotating Machinery Features
Use the TSA signal to compute time-domain rotating machinery features.
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Since you have no condition variables, the resulting histograms display only the distribution of the
feature values across the segments.
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You can also look at the feature trace plots to see how the features change over time. To do so, in
Feature Tables, select FeatureTable1. In the plot gallery, select Feature Trace.
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In the feature trace plot, all three features show an upward slope corresponding to the continuing
degradation. The values of the features relative to one another have no meaning, as the features
represent different metrics that are not normalized.
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Extract Spectral Features
Spectral features generally work well when a defect results in a periodic oscillation. Extract spectral
features from your TSA signal. Start by computing a power spectrum. To do so, select Spectral
Estimation > Power Spectrum. Select the TSA signal and change Algorithm to Welch's method.
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The spectrum for the first segment includes distinct peaks at around 500 Hz and 1540 Hz. The
rotation speed is 1800 rpm or 30 Hz. The ratios between these peak frequencies are roughly 17 and
51, consistent with the gear ratios. The intervening peaks are additional harmonics of those
frequencies.

7 Diagnostic Feature Designer

7-70



In the order and frequency domains, the segment spectra are superposed. The panner allows you to
select multiple segments just as it does in the time domain. Set the panner to cover all the segments.
As you expand the number of segments, the power increases at 300 Hz. This frequency corresponds
to an order of 10 with respect to the 30 Hz rotation rate, and represents the increasing defect.
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Extract spectral features. To do so, click Spectral Features and confirm that Spectrum is set to
your power spectrum. Using the slider, limit the range to about 4000 Hz to bound the region to the
peaks. The power spectrum plot automatically changes from a log to a linear scale and zooms in to
the range you select.
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The resulting histogram plot now includes the spectral features.
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Plot the band-power feature trace to see how it compares with the all-segment power spectrum. Use
Select Features to clear the other feature traces.
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The band-power feature captures the progression of the defects in each machine. The traces of the
other two spectral features do not track defect progression.
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Rank Features with Prognostic Ranking Methods
Rank the features to see which ones perform best for predicting RUL. The app provides three
prognostic ranking methods:

• Monotonicity characterizes the trend of a feature as the system evolves toward failure. As a
system gets progressively closer to failure, a suitable condition indicator has a monotonic positive
or negative trend. For more information, see monotonicity.

• Trendability provides a measure of similarity between the trajectories of a feature measured in
multiple run-to-failure experiments. The trendability of a candidate condition indicator is defined
as the smallest absolute correlation between measurements. For more information, see
trendability.

• Prognosability is a measure of the variability of a feature at failure relative to the range between
its initial and final values. A more prognosable feature has less variation at failure relative to the
range between its initial and final values. For more information, see prognosability.

Click Rank Features and select FeatureTable1. Because you have no condition variables, the app
defaults to the prognostic ranking technique Monotonicity.
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Four of the features score at or close to the maximum. Two features, PeakAmp1 and PeakFreq1,
have considerably lower scores.

Add rankings for the other two prognostic methods. Click Prognostic Ranking and select
Trendability. Click Apply and then Close Trendability.

Repeat the previous step for Prognosability. The ranking plot now contains the results of all three
ranking methods.
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The ranking results are consistent with the feature traces plotted in “Extract Spectral Features” on
page 7-69.

• The features that track the worsening fault have high scores for Monotonicity. These features
also have high scores for the other two methods.

• PeakFreq1, which has the second lowest ranking Monotonicity score, has high scores for both
Trendability and Prognosability. These high scores result from the close agreement among
feature trajectories and low variability at the end of the simulation, where the fault is greatest.

• PeakAmp1 has low scores for all rankings, reflecting both the insensitivity of this feature to defect
progression and the variation in the machine values for this feature.

Since you have four features which scored well in all categories, choose these features as the feature
set to move ahead with in an RUL algorithm.

See Also
Diagnostic Feature Designer | monotonicity | prognosability | trendability

More About
• “Models for Predicting Remaining Useful Life” on page 5-4
• “Feature Selection for Remaining Useful Life Prediction” on page 5-2
• “Identify Condition Indicators for Predictive Maintenance Algorithm Design”
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Automatic Feature Extraction Using Generated MATLAB Code
In Diagnostic Feature Designer, you explore features interactively, using tools for signal
processing, feature generation, and ranking. Once you determine which features perform best, you
can generate code that reproduces your interactive computations and allows you to automate feature
extraction on similar input data. Select among your features, computed variables, and ranking tables
to specify what the code includes.

With the generated code, you can:

• Apply the code directly to a larger set of measurement data that includes more members and,
therefore, increase the number of members in your feature set. Using more members improves
model training in Classification Learner.

• Modify the function to suit your application. For example, you might add signal processing or
features that are not available in Diagnostic Feature Designer.

• Incorporate portions of the function into another set of code that you are developing.

Generate a Function for Features
The simplest way to generate code for automatic feature extraction is to use the Export button in the
Feature Designer tab and select Generate Function for Features.

Your selection opens a set of options that allow you to specify the features to include from the feature
table that you select. Code generation is possible for only one feature table at a time.
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You can generate code for all your features or, if you have performed ranking, you can choose the
number of top-ranked features to include. If you have performed ranking, you can also generate the
function using the Export button in the Feature Ranking tab. The generated code includes the
calculations for any computed signals or spectra that the feature requires. The code includes a
preamble that summarizes the computations that the code performs.

%DIAGNOSTICFEATURES recreates results in Diagnostic Feature Designer.
%
% Input:
%  inputData: A table or a cell array of tables/matrices containing the
%  data as those imported into the app.
%
% Output:
%  featureTable: A table containing all features and condition variables.
%  outputTable: A table containing the computation results.
%
% This function computes signals:
%  Vibration_tsa/Data
%
% This function computes features:
%  Vibration_stats/Data_ImpulseFactor
%  Vibration_stats/Data_Mean
%  Vibration_stats/Data_ShapeFactor
%  Vibration_stats/Data_Std
%  Vibration_tsa_rotmac/Data_RMS
%  Vibration_tsa_rotmac/Data_CrestFactor
%
% Organization of the function:
% 1. Compute signals/spectra/features
% 2. Extract computed features into a table
%
% Modify the function to add or remove data processing, feature generation
% or ranking operations.

Generate a Function for Specific Variables, Features, and Ranking
Tables
If you want to customize your selections for code generation, use the Export > Generate Function
for... option. With this option you can:

• Select code generation for any outputs that the app computes, including computed signals and
spectra, ensemble statistics, and ranking tables.

• Filter your outputs so that you can choose among features with specific characteristics, such as
input signal or variable-name text.

 Automatic Feature Extraction Using Generated MATLAB Code

7-81



You can generate a function for features from one feature table at a time. If you are using frame-
based processing, each feature table is associated with one frame policy, or combination of frame size
and frame rate. Therefore, if you want to generate code for features computed with two different
frame policies, or with both full-signal mode and a frame-based mode, you must generate a separate
function for each feature table.

When you generate code for frame-based signals that depend on derived full signals, computations
for the full signals appear also in the generated code.

When you select Export > Generate Function for... and choose a feature source, a window
containing candidate selection outputs opens. Each output row includes additional information on
how the output was computed.

In the figure, the skewness and RMS features and the power spectrum are selected. The Details
pane displays the output and input for the most recently selected item. The Code Will Be Generated
For pane contains your selections.
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Along with the selection window, selecting Export > Generate Function for... opens the Code
Generation tab, which contains filtering options.

For example, to select only features that are computed directly from the TSA signal, select Input >
Vibration_tsa/Data, as the figure shows.

The filtered selection window displays the three features that are based directly on the TSA signal,
along with the power spectrum, which is also based directly on the TSA signal.

When you specify a specific input signal, the Input filter returns only the items which use that signal
directly. For example, the list filtered on the TSA input signal contains no features that are derived
from the TSA signal spectrum. If you want to filter for text that occurs anywhere in the computation
chain, type the text into the filter. For example, if you type tsa into the Input filter, as the following
figures show, the filtered list now includes the TSA spectral features. Text matching is case
insensitive.
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You can also filter on output, method, and analysis type. For example, if you want to generate code for
a ranking table, select Analysis Type > ranking.

The selection list includes the T-Test and Bhattacharyya ranking tables.

To clear all the filters, click Reset Filters.

Each filtered view displays a subset of available outputs. To display all your selections together, click
Sort by Selection.

The items that you selected in the filtered views appear in one group at the top of the selection list.
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To generate code for these items, click Generate Function.

Save and Use Generated Code
The app assigns the default name of diagnosticFeatures to the function. You can save the
function as a file with this name, or rename the function and file name. To run the function, follow the
syntax in the function line of the code. For example, suppose the function line is:

function [featureTable,outputTable] = diagnosticFeatures(inputData)

The two outputs of this function are a feature table that contains the features and condition variables,
and an output table that contains all of the variables in the ensemble. The second output argument is
optional. You can use this function on any input data that has the same input variables as the data
that you originally imported into the app. For instance, suppose that your data is in fullDataTable
and you need only a feature table features. Use:

features = diagnosticFeatures(fullDataTable)

If you originally imported individual tables using Import Single-Member Datasets and want to
validate the code against the original data, you must combine the tables. For example, if you imported
tables t1, t2, and t3, where each table represents a different ensemble member, first combine the
tables into a single input table, and then run the generated function.

inputData = {t1,t2,t3};
features = diagnosticFeatures(inputData);

For an example of generating code and validating the code with the original data, see “Generate a
MATLAB Function in Diagnostic Feature Designer” on page 7-87. For an example that applies code
to a new dataset, see “Apply Generated MATLAB Function to Expanded Data Set” on page 7-93. For
a description of generated code itself and how it performs its computations, see “Anatomy of App-
Generated MATLAB Code” on page 7-106.

Change Computation Options for Generated Code
The code that you generate depends in part on your selections in Computation Options. The figure
below shows the Computation Options choices when you import an ensemble datastore.
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In some cases, you may want the generated code to use a different option than the option you used to
compute your features in the app. For instance, you might want to invoke parallel computing in the
code when you did not use that option originally. If you originally imported data from an ensemble
datastore into local memory, you might want your code to interact directly with the external files
instead.

The green box in the Computation Options figure indicates the options that you can change
immediately before generating code.

• Store all results in a local dataset or Write results to the same folder as the original data
— You can switch between options for code generation. These options appear only when you
import an ensemble datastore.

• Use parallel computing — You can change this option for code generation. You can use parallel
computing only if you have Parallel Computing Toolbox installed.

You cannot change the data handling mode and frame policy with which specific features were
calculated when you generate code.

See Also
Diagnostic Feature Designer

More About
• “Generate a MATLAB Function in Diagnostic Feature Designer” on page 7-87
• “Apply Generated MATLAB Function to Expanded Data Set” on page 7-93
• “Anatomy of App-Generated MATLAB Code” on page 7-106
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
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Generate a MATLAB Function in Diagnostic Feature Designer
In Diagnostic Feature Designer, you explore features interactively, using tools for signal
processing, feature generation, and ranking. Once you select the set of the features that perform
best, you can generate a MATLAB function that reproduces the calculations for those features. You
can apply this function directly to a larger set of measurement data and increase the number of
members in your feature set. You can also modify the function to suit your application, and
incorporate part or all of the function into other code.

This example shows how to generate a MATLAB function to compute a set of features, and how to
validate that function with the original data set.

The example assumes that you are familiar with ensemble data concepts and with basic operations in
the app, such as data import, signal processing, and feature generation. For more information on
these concepts and operations, see “Identify Condition Indicators for Predictive Maintenance
Algorithm Design”.

Import the Transmission Model Data
This example uses ensemble data generated from a transmission system model in “Using Simulink to
Generate Fault Data” on page 1-25. Outputs of the model include:

• Vibration measurements from a sensor monitoring casing vibrations
• Tachometer sensor, which issues a pulse every time the shaft completes a rotation
• Fault code indicating the presence of a modeled fault

In your MATLAB command window, load the transmission data, which is stored in the table
dataTable.

load dfd_Tutorial dataTable

dataTable is an ensemble table that contains 16 members, each of which represents one simulated
transmission system. Each row of the table corresponds to one member. Each column of the table
corresponds to one variable, such as Vibration or FaultCode. All ensemble members have the
same variables.

Open Diagnostic Feature Designer.

diagnosticFeatureDesigner

In the app, import dataTable as a multimember ensemble with the condition variable faultCode.
When import is complete, the signal browser displays the vibration and tacho data, and the dataset
browser displays your imported ensemble. For information on the import process, see “Import and
Visualize Ensemble Data in Diagnostic Feature Designer”.
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Compute a TSA Signal
Compute a time-synchronous average (TSA) signal from your vibration and tacho signals. To do so, in
the Feature Designer tab, select Filtering & Averaging > Time-Synchronous Signal Averaging.
Set the parameters as shown in the following figure and click OK.

The new signal appears in the app data browser.

For information on TSA signals, see tsa.
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Extract Features from the TSA Signal
In the Feature Designer tab, select Time-Domain Features > Signal Features to open the set of
available signal features. Select the features for mean, standard deviation, and kurtosis.

View the feature values. In the data browser, select FeatureTable1. Then, in the plot gallery, click
Feature Table View. These steps open a table containing the feature values for each member along
with the condition variable faultCode.
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Generate a MATLAB Function
Generate a MATLAB function that reproduces the calculations for these features. In the Feature
Designer tab, select Export > Generate Function for Features.
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Your selection opens a dialog box that allows you to specify the feature table and the features. The
default options FeatureTable1 and Use All Features are your only choices in this case, as you
have only one feature table and have not performed any ranking.

When you click OK, a function script opens in the MATLAB editor that begins with the following lines.

function [featureTable,outputTable] = diagnosticFeatures(inputData)
%DIAGNOSTICFEATURES recreates results in Diagnostic Feature Designer.
%
% Input:
%  inputData: A table or a cell array of tables/matrices containing the
%  data as those imported into the app.
%
% Output:
%  featureTable: A table containing all features and condition variables.
%  outputTable: A table containing the computation results.
%
% This function computes signals:
%  Vibration_tsa/Data
%
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% This function computes features:
%  Vibration_tsa_stats/Data_Kurtosis
%  Vibration_tsa_stats/Data_Mean
%  Vibration_tsa_stats/Data_Std
%
% Organization of the function:
% 1. Compute signals/spectra/features
% 2. Extract computed features into a table

The preamble describes what the function computes. In this case, the function computes the features
along with the TSA processing that produced the signal source for these features. Save the script as
diagnosticFeatures.m.

For more information on the code content, see “Anatomy of App-Generated MATLAB Code” on page 7-
106.

Validate Function with the Original Data
Run the function using dataTable to create a new feature table ft.

featuretable = diagnosticFeatures(dataTable)

Compare the first eight feature values to the corresponding feature values in the app. At the level of
the displayed precision, the values are identical.

  16×4 table

    faultCode    Vibration_tsa_stats/Data_Kurtosis    Vibration_tsa_stats/Data_Mean    Vibration_tsa_stats/Data_Std
    _________    _________________________________    _____________________________    ____________________________

        0                     2.2516                             0.022125                        0.99955           
        1                     2.2526                            -0.027311                          0.999           
        1                     2.2571                             -0.45475                        0.99629           
        1                     2.2526                              0.47419                          0.999           
        1                     2.2529                              0.37326                          0.999           
        1                     2.2526                             -0.14185                          0.999           
        1                     2.2529                              0.40644                          0.999           
        1                     2.2529                             -0.47485                        0.99915           
       

See Also
read | readFeatureTable | readMemberData | tsa | workspaceEnsemble |
writeToLastMemberRead

More About
• “Identify Condition Indicators for Predictive Maintenance Algorithm Design”
• “Automatic Feature Extraction Using Generated MATLAB Code” on page 7-80
• “Apply Generated MATLAB Function to Expanded Data Set” on page 7-93
• “Anatomy of App-Generated MATLAB Code” on page 7-106
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Apply Generated MATLAB Function to Expanded Data Set
This example shows how to use a small set of measurement data in Diagnostic Feature Designer to
develop a feature set, generate and run code to compute those features for a larger set of
measurement data, and compare model accuracies in Classification Learner.

Using a smaller data set at first has several advantages, including faster feature extraction and
cleaner visualization. Subsequently generating code so that you can automate the feature
computations with an expanded set of members increases the number of feature samples and
therefore improves classification model accuracy.

The example, based on “Analyze and Select Features for Pump Diagnostics” on page 7-25, uses the
pump fault data from that example and computes the same features. For more detailed information
about the steps and the rationale for the feature development operations using the pump-fault data in
this example, see “Analyze and Select Features for Pump Diagnostics” on page 7-25. This example
assumes that you are familiar with the layout and operations in the app. For more information on
working with the app, see the three-part tutorial in “Identify Condition Indicators for Predictive
Maintenance Algorithm Design”.

Load Data and Create Reduced Data Set

Load the data set pumpData. pumpData is a 240-member ensemble table that contains simulated
measurements for flow and pressure. pumpData also contains categorical fault codes that represent
combinations of three independent faults. For example, a fault code of 0 represents data from a
system with no faults. A fault code of 111 represents data from a system with all three faults.

load savedPumpData pumpData

View a histogram of original fault codes. The histogram shows the number of ensemble members
associated with each fault code.

fcCat = pumpData{:,3};
histogram(fcCat)
title('Fault Code Distribution for Full Pump Data Set')
xlabel('Fault Codes')
ylabel('Number of Members')
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Create a subset of this data set that contains 10% of the data, or 24 members. Because simulation
data is often clustered, generate a randomized index with which to select the members. For the
purposes of this example, first use rng to create a repeatable random seed.

rng('default')

Compute a randomized 24-element index vector idx. Sort the vector so that the indices are in order.

pdh = height(pumpData);
nsel = 24;
idx = randi(pdh,nsel,1);
idx = sort(idx);

Use idx to select member rows from pumpData.

pdSub = pumpData(idx,:);

View a histogram of the fault codes in the reduced data set.

fcCatSub = pdSub{:,3};
histogram(fcCatSub)
title('Fault Code Distribution for Reduced Pump Data Set')
xlabel('Fault Codes')
ylabel('Number of Members')
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All the fault combinations are represented.

Import Reduced Data Set into Diagnostic Feature Designer

Open Diagnostic Feature Designer by using the diagnosticFeatureDesigner command. Import
pdSub into the app as a multimember ensemble.
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Extract Time-Domain Features

Extract the time-domain signal features from both the flow and pressure signal. In the Feature
Designer tab, click Time Domain > Signal Features and select all features.

Extract Frequency Domain Features

As “Analyze and Select Features for Pump Diagnostics” on page 7-25 describes, computing the
frequency spectrum of the flow highlights the cyclic nature of the flow signal. Estimate the frequency
spectrum with Spectral Estimation > Power Spectrum by using the options shown for both flow
and pressure.
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Compute spectral features in the band 25–250 Hz, using the options shown, for both flow and
pressure spectra.
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Rank Features

Rank your features using Rank Features > FeatureTable1. Because faultCode contains multiple
possible values, the app defaults to the One-Way ANOVA ranking method.
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Export Features to Classification Learner

Export the features set to Classification Learner so that you can train a classification model. In the
Feature Ranking tab, click Export > Export Features to the Classification Learner. Select all
the features that have a One-Way ANOVA metric greater than 1. This selection includes all the
features from pressure_ps_spec/Data_Wn2 and up.
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Train models in Classification Learner

Once you click Export, Classification Learner opens a new session. Accept 5-fold cross-validation
and click Start Session.
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Train all available models by clicking All in the Classification Learner tab, and then Train.

For this session, the highest scoring model, Boosted Trees, has an accuracy around 63%. Your
results may vary.
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Generate Code to Compute Feature Set

Now that you have completed your interactive feature work with a small data set, you can apply the
same computations to the full data set using generated code. In Diagnostic Feature Designer,
generate a function to calculate the features. To do so, in the Feature Ranking Tab, select Export >
Generate Function for Features. Select the same 50 features that you exported to Classification
Learner.

When you click OK, a function appears in the editor.
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Save the function to your local folder as diagnosticFeatures.

Apply the Function to Full Data Set

Execute diagnosticFeatures with the full pumpData ensemble to get the 240-member feature set.
Use the following command.

feature240 = diagnosticFeatures(pumpData);

feature240 is a 240-by-51 table. The table includes the condition variable faultCode and the 50
features.

Train Models in Classification Learner with Larger Feature Table

Train classification models again in Classification Learner, using feature240 this time. Open a
new session window using the following command.

classificationLearner

In the Classification Learner window, click New Session > From Workspace. In the New Session
window, in Data Set > Data Set Variable, select feature240.
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Repeat the steps you performed with the 24-member data set. Accept 5-fold cross-validation, start the
session, and train all models.
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For this session, the highest model accuracy, achieved by both Bagged Trees and RUSBoosted
Trees, is around 80%. Again, your results may vary, but they should still reflect the increase in best
accuracy.
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Anatomy of App-Generated MATLAB Code
With Diagnostic Feature Designer, you can generate MATLAB code that automates the
computations for the features and variables you choose. This generated code accepts any ensemble
data that is configured the same way as the ensemble data you imported into the app, and generates
a new feature table, as well as computed signals, spectra, and ranking tables, that can be used for
feature analysis or model training. The code replicates various options that you set within the app,
and can perform:

• Full-signal computation of signals and features for each member
• Ranking for features
• Ensemble-level computations for characterizing ensemble behavior
• Parallel processing
• Processing of segmented signals, also known as frame-based processing

Ensemble management is a fundamental component of the generated code. For information about
data ensembles and ensemble variable types, see “Data Ensembles for Condition Monitoring and
Predictive Maintenance” on page 1-2.

You can compare this functional description with actual code by generating your own code in the app.
For more information, see “Automatic Feature Extraction Using Generated MATLAB Code” on page 7-
80. For an example showing how to generate code, see “Generate a MATLAB Function in Diagnostic
Feature Designer” on page 7-87. For an example that provides a setup for frame-based code
generation, see “Perform Prognostic Feature Ranking for a Degrading System Using Diagnostic
Feature Designer” on page 7-59.

Basic Function Flow
The figure illustrates the basic functional flow of generated code. In this diagram, the function
returns both features and derived variables, uses serial processing, and operates on full signals.
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The figure breaks the code flow into three major sections: Initialize, Loop through Members, and
Create Outputs.

• The Initialize block performs initial configuration. Specific operations depend on the type of data
you originally imported and the variables and features that you specified for code generation.

• Loop Through Members block operations execute all the variable and feature computations one
member at a time.

• Create Outputs extracts and formats the feature table and the full ensemble.

Inputs
The function operates on input data that is consistent with the data you initially imported into the
app. When you plan to generate code from the app, importing your data in the same format as the
data that you plan to apply your code to is recommended.

• If you imported a workspace variable such as an ensemble table or cell array from memory, the
function requires an ensemble table or cell array.

• If you imported a file or simulation ensemble datastore, the function requires a file or simulation
ensemble datastore.

The input data for the code must have a variable structure that is similar to the data that you
imported into the app. Your input ensemble can include additional variables as well. The code ignores
the additional variables and does not flag them as errors.

Initialization
In the Initialize block, the code configures an ensemble that contains variables both for the inputs
and for the outputs that the function computes in the Loop Through Members block. These computed
outputs include the variables and features you explicitly selected when you generated the code and
any additional variables, such as a tsa signal, that any of your features require.

• If the input data is a table or cell array, the code creates a workspaceEnsemble object that
includes variables corresponding to the input data variables. This object is similar to an ensemble
datastore object, but it operates on data in memory rather than in external files.

• If the input data is a simulationEnsembleDatastore or a fileEnsembleDatastore object,
the code operates on the object directly.

Once the code initializes the ensemble, the code appends all the variables and features to be
computed during member computations. The code eliminates redundant variables with the unique
function.

The figure shows an example of a workspace ensemble and its data variables. The data variables
identify the input signals, output signals and spectra, and features.
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Key ensemble-related functions during initialization include:

• reset — Reset ensemble to its original unread state so that the code reads from the beginning
• workspaceEnsemble — Ensemble object that manages data in memory
• fileEnsembleDatastore — Ensemble object that manages data in external files
• simulationEnsembleDatastore — Ensemble object that manages simulated data in external

logs or files

Note During initialization, the function does not preallocate arrays to use during processing. This
lack of preallocation is for clarity and flexibility, since the code must operate on an input ensemble
with any number of members. During follow-on computation cycles, which append newly computed
data to intermediate results tables, the code suppresses MATLAB Code Analyzer warnings about
preallocation using the in-line comment %#ok<AGROW>. For information about Code Analyzer
message preferences, see “Code Analyzer Preferences” (MATLAB).

Member Computation Loop
In the member computation loop, the function performs all member-specific computations, one
member at a time.

A series of read function calls initiates the loop, reading each ensemble member in succession until
there are no ensemble members left. The computations that follow each read command provide, for
that member, all the specified variables and features.

A running member-level results table collects the results as each variable or feature set is computed.

The figure shows an example of a member-level results table. Here, the results table contains two
embedded tables that contain features and an embedded timetable that contains a computed signal.
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Once all computations are complete, the code appends the full member results table back to the main
ensemble.

Member computations use a try/catch combination to handle input data that cannot be processed.
This approach prevents bad data from halting code execution.

The code uses these key ensemble-management functions:

• read — Read the next ensemble member
• readMemberData — Extract data from an ensemble member for a specific variable
• writeToLastMemberRead — Write data to ensemble member
• table — Ensemble array that contains variables and features in named columns and members in

rows
• array2table — Convert an array to a table
• timetable — Specialized member-specific table that contains signals in named variable columns

and a specific time for each row
• array2timetable — Convert an array to a timetable

Outputs
The main output of the generated function is a feature table, which the code extracts using the
function readFeatureTable. This output is the same whether you are using a workspace ensemble
or an ensemble datastore as input. The feature table contains the scalar features themselves as well
as the condition variables.

The figure shows an example of a feature table. Each row represents a member. The first column
contains the condition variable, and subsequent columns contain a scalar feature value.

Use the optional second output argument to return the ensemble itself. If the input to your function is
a table or cell array, the function converts the workspace ensemble into a table using the readall
function, and returns the table.

The figure shows an example of an output table. Each row represents a member. The first two
columns are the input variables, and the remaining columns contain features or computed variables.
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If your function is based on an original import of an ensemble datastore object, the function returns
the updated datastore object.

The code includes these key functions for outputs:

• readFeatureTable — Read condition variable and feature data from an ensemble data set into a
table

• readall — Read all data from an ensemble data set into a table

Ranking
When you select one or more ranking tables when you generate code, the function includes a ranking
section that follows the extraction of the feature table, as shown in the figure. The figure shows detail
only for the portions of the flowchart that change from the Basic Function Flow figure. In Create
Outputs, the figure shows all output arguments when using ranking.

To initialize ranking, the code extracts the feature values and the labels (condition variable values)
from the feature table. The code then defines class groups by converting the labels into numeric
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values using the function grp2idx to assign a group index to each feature. For example, if the
condition variable FaultCode has the labels "Faulty", "Degraded", and "Healthy", grp2idx
groups the members with these labels into groups 1, 2, and 3.

For each ranking method, the code computes a score for each feature with these steps:

1 Normalize the features using the specified normalization scheme.
2 Call the function for the ranking method, using a group-index mask to separate the groups. The

specific syntax depends on the ranking method function.
3 If a correlation-importance factor is specified, update the score using

correlationWeightedScore. Correlation weighting lowers the scores of features that are
highly correlated to higher ranking features, and that therefore are redundant.

4 Append the scores to the scoring matrix and the method to the method list.

The code then creates a ranking table by using sortrows to sort the rows by the scores of the Sort
By method specified in the app during code generation.

The figure shows an example of a ranking table for four features, sorted by T-Test results.

The code uses these key functions for managing ranking:

• grp2idx — Convert labels to numeric values
• correlationWeightedScore — Weight feature-ranking scores with correlation factor
• sortrows — Rank features by sorting the rows by score

Ensemble Statistics and Residues
An ensemble statistic is a statistical metric that represents the entire ensemble rather than an
individual member. For example, in the app, you can specify the ensemble maximum for a vibration
signal. The resulting single-member statistic contains, for each time sample, the vibration value that
is the maximum of all the member vibration values.

You can use ensemble statistics to compute residues by subtracting the same ensemble metric from
all the member signals for a specific variable. For example, if the ensemble mean represents an
average operating point, you can subtract the mean from all members to isolate behavior around the
operating point. The isolated signal is a form of a residue.

The figure illustrates the code flow when you specify features based on a mean residual signal.
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In this flow, there are two separate member loops. The first member loop computes the ensemble
statistics. The second member loop performs the signal, spectrum, and feature processing. In the
flowchart, the second member processing loop illustrates the residue signal and residue-based
feature processing steps.

Loop 1: Ensemble Statistics Processing

To compute ensemble statistics for a specified variable, the code first loops through the members
while maintaining an accumulator. At a given point in the looping sequence, the accumulator might
contain, for example:

• The maximum signal value calculated so far
• A running sum of all the data values and an iteration count
• The minimum signal value calculated so far

The figure shows an example of accumulator contents and the running sum and count in the mean
variable.
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At the end of the loop iterations, the code transfers the ensemble max and min signals from the
accumulator to the ensemble statistics max and min variables. The code calculates the ensemble
mean by dividing the ensemble sum by the number of counts.

The figure shows an example of final ensemble statistics table and the final mean variable that now
contains the mean signal.

Loop 2: Residue Processing

In the main member processing loop, the code creates residue signal variables by subtracting the
specified statistics from the specified signals, and packages these residues in the same manner as
other signals and features.

The figure shows an example of a member result table with residues. The table contains two residue
signals and two feature sets computed from those signals.

Parallel Processing
When you specify parallel processing, the code partitions the ensemble members into subensembles
and executes the full member processing loop in parallel for each subensemble, as the figure shows.

 Anatomy of App-Generated MATLAB Code

7-113



If the main ensemble is a workspaceEnsemble object, then at the end of each partition-processing
cycle, the code saves the updated subensemble as a cell in an array that stores the results for all the
subensembles. The following figure shows an example of this array along with the first two cells. In
this figure, each partition contains 13 members.
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If the main ensemble is a workspace ensemble, then once all partition processing is complete, the
code reassembles the result partitions and updates the main ensemble using the refresh command.

If the main ensemble is an ensemble datastore object, then the code updates the object directly when
it writes results to the subensemble member at the end of each member loop.

The code uses these key functions for parallel processing:

• numpartitions — Number of partitions to separate ensemble members into
• partition — Partition an ensemble
• refresh — Update a workspace ensemble with reassembled partition results

Frame-Based Processing
When you have specified frame-based processing in the app, the generated code divides each full
member signal into segments, or frames. The size and frequency of these frames are stored in the
frame policy.

The figure illustrates the flow. The code executes a frame loop within each member loop. When you
are selecting features for generating code, the app constrains your feature selections to a single
frame policy. The generated function therefore never contains more than one frame loop.
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During the initialization portion, the code adds only the input variables and the frame policy id, such
as FRM_2, to the data variables. The code does not add the variables to be computed. Those variables
are stored in the FRM_ variable.

During the first part of the member loop, the code:

1 Reads the full member signal.
2 Creates a frame interval table that spans the time range of the full signal and which contains the

start and stop times for each frame, using frameintervals.
3 Initializes a frame table at the member level. This table ultimately contains computed variable

values for all the frames in the member.

The second part of the member loop is the frame loop. For each frame, the code:

1 Uses the frame interval information to extract the data for that frame from the full signal.
2 Computes the signals, spectra, and features in the same manner as for full-signal processing at

the member level. After computing each new variable, the code appends the variable to the
frame results table. The figure shows an example of a member frame table. The first two
elements contain the start and stop time of the frame interval. The final element contains the
features computed for that frame.

3 When the variable computations are complete, the code appends the completed frame results
table to the member-level frame table. The figure shows an example of the member-level table,
which contains the frame results for all members.
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The final operation in the member loop is to write the completed member frame table to the ensemble
member.

Creation of the feature table output is essentially the same as for the basic case, but each member
variable now includes all the segments.

See Also
correlationWeightedScore | fileEnsembleDatastore | frameintervals | grp2idx | read |
readMemberData | readall | refresh | reset | simulationEnsembleDatastore | unique |
workspaceEnsemble | writeToLastMemberRead

 Anatomy of App-Generated MATLAB Code

7-117



More About
• “Automatic Feature Extraction Using Generated MATLAB Code” on page 7-80
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
• “Generate a MATLAB Function in Diagnostic Feature Designer” on page 7-87
• “Apply Generated MATLAB Function to Expanded Data Set” on page 7-93
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Diagnostic Feature Designer Help

• “Import Single-Member Datasets” on page 8-2
• “Import Multimember Ensemble” on page 8-4
• “Ensemble View Preferences” on page 8-6
• “Computation Options” on page 8-7
• “Remove Harmonics” on page 8-10
• “Time-Synchronous Signal Averaging” on page 8-11
• “Filter Time-Synchronous Averaged Signals” on page 8-12
• “Ensemble Statistics” on page 8-14
• “Interpolation” on page 8-15
• “Subtract Reference” on page 8-16
• “Order Spectrum” on page 8-17
• “Power Spectrum” on page 8-19
• “Signal Features” on page 8-20
• “Rotating Machinery Features” on page 8-22
• “Nonlinear Features” on page 8-24
• “Spectral Features” on page 8-27
• “Group Distances” on page 8-29
• “Feature Selector” on page 8-30
• “Export Features to MATLAB Workspace” on page 8-31
• “Export Features to Classification Learner” on page 8-32
• “Export a Dataset to the MATLAB Workspace” on page 8-33
• “Generate Function for Features” on page 8-34
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Import Single-Member Datasets
The app accepts input data in the form of individual single-member datasets or an ensemble dataset.
Import single-member datasets when:

• Your source data in the MATLAB workspace consists of an individual workspace variable for each
machine member.

• The size and number of your member datasets are small enough for app memory to accommodate

Before importing your data, it must already be clean, with preprocessing such as outlier and missing-
value removal. For more information, see “Data Preprocessing for Condition Monitoring and
Predictive Maintenance” on page 2-2.

The app accepts individual member table arrays, timetable arrays, or numeric matrices, each
containing the same independent variables, data variables, and condition variables.

Input Item Content Notes
Data Variables Can contain timetables, tables,

cell arrays, or numeric arrays
 

Independent Time Variables Double, duration, or
datetime

All time variables must be of the
same type. If your data was
uniformly sampled and you don't
have recorded timestamps, you
can construct a uniform timeline
during the import process.

Condition Variables Scalar — Numeric, string, cell,
or categorical

You can import condition
variables along with your data
in tables, timetables, or cell
arrays, but not in matrices.

Member Matrices Purely numeric array. Only one
independent variable, but any
number of data variables tied to
that independent variable

Cannot accommodate variable
names

For more information about organizing your data for import, see “Organize System Data for
Diagnostic Feature Designer” on page 7-20.

Selection — Select Data to Import
Select the same-size datasets you want to import from your workspace. Import all the datasets you
want to use in your session at one time. You cannot import data incrementally.

Configuration — Configure Ensemble Variables
Review and modify the variable types and units that Diagnostic Feature Designer associates with
your imported variables.

In Variable Name, the configuration view displays the name of the variable as it will appear after the
import. If a table variable consists of a timetable or table with its own variable names, then the app
combines these variable names into a new name. For example, if table variable Vibration is a
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timetable with Time and Data variables, then the imported variable names are Vibration/Time
and Vibration/Data.

In Variable Type, the app infers the variable type from its source. Sometimes, the variable type or
unit is ambiguous, and you must update the default setting.

• Numeric scalars can represent either condition variables or features. By default, the app assumes
numeric scalars are of type feature. If your scalar is actually a condition variable, change the
variable type to Condition Variable.

• Independent variable assignment is explicit in timetables, but not in tables or matrices. If the
configuration table shows the wrong variable type for an independent variable, select the correct
variable type.

In a matrix, you can use only one independent variable. If you have multiple identical independent
variables, such as a timeline that applies to all the data, select Skipfor the redundant variables.

• In Unit, the configuration view displays the units associated with the variables. If the unit
specification for a variable is incorrect, update Unit by selecting or entering an alternative.

Uniformly sampled data does not always have explicitly recorded timestamps. The app detects when
your imported data does not contain an explicit independent variable and allows you to create a
uniform one. Specify the type, starting value, and sampling interval.

Review — Review and Import Variables
Review the ensemble variables that result from your import. Each of these variables is an ensemble
signal, spectrum, or feature that contains information from all your imported members. The app
maintains these variables in an ensemble with the name specified in Ensemble name. Update the
default name if you want to use a different ensemble name.

Click Import once you are confident your ensemble is complete. If, after completing the import, you
find that you need additional datasets, you must perform a fresh import that includes everything you
want. This fresh import deletes existing imported variables, derived variables, and features.

if you plan to explore the data in multiple sessions, consider saving your session immediately after
you import. Saving your session after import provides you with an option for a clean start for new
sessions without needing to import your separate files again. You can save additional sessions after
you have generated derived variables and features.

See Also
table | timetable

More About
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
• “Organize System Data for Diagnostic Feature Designer” on page 7-20
• “Prepare Matrix Data for Diagnostic Feature Designer” on page 7-11
• “Import and Visualize Ensemble Data in Diagnostic Feature Designer”
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Import Multimember Ensemble

Import Multimember Ensemble
The app accepts input data in the form of individual member datasets or ensemble datasets. Import
multimember ensemble datasets when your source data is combined into one collective dataset that
includes data for all members. This collective dataset can be any of the following:

• An ensemble table containing table arrays or matrices. Table rows represent individual
members.

• An ensemble cell array containing tables or matrices. Cell array rows represent individual
members.

• An ensemble datastore object that contains the information necessary to interact with files stored
externally to the app. Use an ensemble datastore object especially when you have too much data
to fit into app memory.

The members in the collective dataset must all contain the same independent variables, data
variables, and condition variables.

• All independent time variables must be of the same type — either all double or all duration or all
datetime. If your original data was uniformly sampled and timestamps were not recorded, the
app prompts you to construct a uniform timeline during the import process

• Embedded matrices can contain only one independent variable, but can have any number of data
variables tied to that independent variable.

• Condition variables in a member dataset contain a single scalar. The form of the scalar can be
numeric, string, cell, or categorical.

If you are using an ensemble datastore object, you must set the ReadSize property to 1. This
property determines how many members the software reads in one operation. The app reads one
member at a time. For more information on ReadSize, see the property description in
fileEnsembleDatastore or simulationEnsembleDatastore.

For more information about organizing your data for import, see “Organize System Data for
Diagnostic Feature Designer” on page 7-20.

Before importing your data, it must already be clean, with preprocessing such as outlier and missing-
value removal. For more information, see “Data Preprocessing for Condition Monitoring and
Predictive Maintenance” on page 2-2.

Selection

Select a single dataset from Ensemble variable. You cannot import data incrementally.

Configuration

Review and modify the variable types and units that Diagnostic Feature Designer associates with
your imported variables.

If a table variable consists of a timetable array or a table array with its own variable names, then
the imported variable name combines these names. For example, if table variable Vibration is a
timetable with Time and Data variables, then the imported variable names are Vibration/Time
and Vibration/Data.
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The import process infers the variable type from its source and type. Sometimes, the type or the unit
is ambiguous, and you must update the default setting.

• Numeric scalars represent either condition variables or features. By default, when you import
tables, the app treats numeric scalars as features. If the default type is incorrect, select the
correct variable type.

• Independent variable type is explicit in timetables, but not in tables or matrices. Select the correct
independent variable type for any unidentified independent variables.

• Update units for variables if necessary by selecting or entering alternatives within Units.

Uniformly sampled data does not always have explicitly recorded timestamps. The app detects when
your imported data does not contain an explicit independent variable and allows you to create a
uniform one. Specify the type, starting value, and sampling interval.

Review

Review the ensemble variables that result from your import. Each of these variables is an ensemble
variable that contains information from all your imported members. The app maintains these
variables in Ensemble name. Update the default if you want to use a different ensemble name.

Click Import once you are confident your ensemble is complete. If, after completing the import, you
find that you need additional data, you must perform a fresh import that includes everything you
want. This fresh import deletes existing imported variables, derived variables, and features.

Consider saving your session immediately after you import if you plan to explore the data in multiple
sessions. Saving your session after import provides you with an option for a clean start for new
sessions without needing to import your ensemble dataset again. You can save additional sessions
after you have generated derived variables and features.

Additional Information

For more information on:

• Data ensembles — See “Data Ensembles for Condition Monitoring and Predictive Maintenance” on
page 1-2.

• Tables and Timetables — See table and timetable.
• Creating an ensemble table from member matrices — See “Prepare Matrix Data for Diagnostic

Feature Designer” on page 7-11.
• File ensemble datastore objects — See fileEnsembleDatastore, “File Ensemble Datastore

With Measured Data” on page 1-17.
• Simulation ensemble datastore objects — See simulationEnsembleDatastore, “Generate and

Use Simulated Data Ensemble” on page 1-10.
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Ensemble View Preferences
Modify how the app displays ensemble members.

Group By
Use Group by when you want to visually separate members by condition variable label. The app uses
a different color for each label. For example, if your condition variable is Fault Code with labels
Healthy and Unhealthy, members from healthy systems are a different color than data from
unhealthy systems. The plot legend shows the color associated with each label value.

Ensemble Representation by Members or Statistics
• Show a curve for each member signal — Display each member individually.

• Maximum number of curves to show — Reduce the number of curves the app displays. Use
this option when you want to clarify the shape of representative member traces, or when your
ensemble contains many members that take a long time to plot.

• Show signal variation among ensemble members as confidence regions — Display the
mean and standard deviation of the ensemble. Use this option when you are interested in signal
variation rather than the specific behavior of individual member signals.

The app saves the statistics that it calculates for the variation plot in single-member variables, and
stores those variables in the SummaryData dataset. These variables are equivalent to the
variables you would generate using Filtering & Averaging > Ensemble Statistics. You can use
these ensemble statistics to generate signal residues in Residue Generation.

• Number of standard deviations — Modify the number of standard deviations to display in
the shaded confidence region.

• Show minimum/maximum boundaries — Display the envelope of the source member
signals.
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Computation Options
Specify preferences for how Diagnostic Feature Designer performs computations and where the
app stores results. Some options are visible only under specific conditions.

Data Handling Mode
By default, the app processes entire signals. You can also divide your signal into uniform segments —
or frames — for sequential processing. Use frame-based processing, for example, to localize abrupt
signal changes or compute the full set of prognostic ranking features for remaining-useful-life
calculations.

• Full signal — Process entire signal in one continuous time series. For example, suppose that you
have an ensemble of 20 vibration signals and select the feature Time Domain Features > Signal
Features > Mean. You create 20 values of the mean, one for each member signal.

• Frame-based — Process signal as a set of individual segments defined by frame size and rate.

• Frame size (FS) — Specify the time interval in seconds over which data is provided.
• Frame rate (FR) — Specify the time interval in seconds between frame start times. This

interval is equivalent to the frequency with which new frames begin.
• Select a frame policy — Use a previously specified frame size and frame rate pair. The app

stores each frame setting pair in a frame policy. You can maintain multiple frame policies, and
select from them using this menu. To create a new frame policy from your current frame size
and frame rate entries, select New Frame....

For example, suppose that you have an ensemble of 20 vibration signals, and each signal is at
least 100 seconds long. If you enter Frame size (FS) as 50 seconds and Frame rate (FR) as
40 seconds, each signal contains at least three frames:

• Frame 1: 0–50 seconds
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• Frame 2: 40–90 seconds
• Frame 3: 80–L, where L is the minimum of 130 seconds or the signal end time.

If you compute the mean feature in frame-based data handling mode, each signal contains
at least three mean values, with one mean value for each frame.

Results Return Location
Whenever you perform a processing operation on your data, you create a new derived variable or
feature. By default, the app writes derived variables and features to the same dataset or folder as
your original data.

When you import an ensemble datastore object, you have a choice of where to store results. The
following options are available only for ensemble datastore objects.

• Write results to the same folder as the original data — Write derived variables and features
to the external folders referenced in your ensemble datastore object. If you are using a
fileEnsembleDatastore object, the object must include a reference to a write function
specific to your data structure. You do not need a write function for a
simulationEnsembleDatastore.
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• Return all results in a local dataset ("InAppData") — Write derived variables and features to
the local workspace of the app. Select this option if, for example:

• You want to keep your source files pristine at least until you have finalized your processing and
feature generation.

• You do not have write permission for your source files.
• You do not have a write function, and you are using a fileEnsembleDatastore.
• The process of writing the results back to the source files is slow.

To retain your local results at the end of the session, use Save Session. You can also export your
results as a table to the MATLAB workspace. From the workspace, you can store the results in
the file, or integrate results selectively using ensemble datastore commands. For more information
on using ensemble datastore objects, see:

• File ensemble datastore objects — See fileEnsembleDatastore, “File Ensemble Datastore
With Measured Data” on page 1-17.

• Simulation ensemble datastore objects — See simulationEnsembleDatastore, “Generate
and Use Simulated Data Ensemble” on page 1-10.

Use Parallel Computing
A key feature of Diagnostic Feature Designer is that the app performs operations on all ensemble
members collectively. For most of these operations, member computations can be performed
independently of one another. When you have many members, using parallel processing can improve
performance significantly.

If you have the Parallel Computing Toolbox installed, you have an option to invoke parallel computing
in the app. Select Use parallel computing.
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Remove Harmonics
Remove Harmonics creates a series of notch filters to remove specific frequencies from your signal.

Use Remove Harmonics, for example, if you are studying one rotating gear shaft in a gear box, and
want to isolate it from the propagated effects of other gear shafts within the box. Also remove
harmonics to filter out harmonically related signal components such as AC line components of 60 Hz,
120 Hz, and so forth.

Source Signal
Signal — Signal from which to remove harmonics. This signal can be an imported data signal such as
a vibration signal, or a derived signal such as a TSA signal.

Filter Settings
Use the filter settings to specify the parameters that define the fundamental target frequency, notch
bandwidth, and number of harmonics. The sample frequency Fs constrains the allowable
combinations to the range [0 Fs/2]. Choose your settings so that the notch of your highest filtered
harmonic falls completely within this range. Specifically, nf + bw/2 must fall within [0 Fs/2]. Here, n is
the number of harmonics, f is the fundamental target frequency, and bw is the notch bandwidth.

• Fundamental frequency — Choose the fundamental frequency based on your knowledge of the
lowest harmonic frequency that you want to remove.

• Notch bandwidth — Set the notch bandwidth:

• Wide enough to remove sidebands and leakage around the target frequency along with the
target frequency

• Narrow enough that the notch does not filter out nearby harmonic information that you want to
retain.

• Number of Harmonics — Set the number of harmonics according to your knowledge of how
much influence the higher harmonics have on your signal. You can try different harmonic levels
and see how much influence they have on feature and computational performance.

The software stores the results of the computation in a new variable. The new variable name includes
the source signal name with the suffix noharm.

For more information on notch – or stopband – filters, see butter.

8 Diagnostic Feature Designer Help

8-10



Time-Synchronous Signal Averaging
Use time-synchronous signal averaging (TSA) when you are working with data from rotating
machinery.

With rotating machinery, a single rotation period encapsulates the full gamut of machinery
component interaction. Averaging over uniform rotation angles or complete rotations, rather than
averaging over more arbitrary time segments, rejects any noise, disturbance, or periodic signal
content that is not coherent with the rotation. This rotation-based averaging is called time-
synchronous averaging, or TSA.

• Signal — Signal to be averaged
• Tacho Information — Rotation rate, specified as one of the following:

• Constant rotation speed (RPM) — Use constant RPM when your rotation rate is fixed both
in time and across all ensemble members.

• Tacho signal — Use a tacho signal when you have a tachometer that transmits pulses at
specific angular points in the rotation. Your tacho signal must have the same length as your
data signal.

• Compute nominal speed (RPM) — Compute the nominal rotation speed for each individual
machine when processing the tacho signal. Select this option if the rotation speeds of your
machines vary across the ensemble and you plan on filtering the TSA signal (see “Filter Time-
Synchronous Averaged Signals” on page 8-12). The app stores the computed rotation speeds
in a condition variable with the suffix rpm.

For an example of performing TSA processing with varying nominal wheel speeds, see “Isolate
a Shaft Fault Using Diagnostic Feature Designer” on page 7-40

• Interpolation method — Select the interpolation to use when computing the TSA signal. For
information on the interpolation methods and the algorithms for using them, see tsa.

• Pulses per rotation — Number of tachometer pulses in each rotation. Set this parameter only
when using a tacho signal.

• Number of rotations — Typically, a TSA signal averages over a single rotation. Increase the
number of rotations when you want to improve frequency resolution for follow-on filtering of the
TSA signal.

The software stores the results of the computation in a new variable. The new variable name includes
the source signal name with the suffix tsa.

Additional Information
For more information on:

• TSA signals — See tsa.
• Tachometer signals — See tachorpm.
• Rotating machinery features — See “Condition Indicators for Gear Condition Monitoring” on page

3-10.
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Filter Time-Synchronous Averaged Signals
Apply filtering to a TSA signal to generate additional signals that isolate the response of specific
components within a harmonically interrelated system such as a gearbox. These isolated signals can
then be used for rotating machinery features that detect faults in specific physical components and
locations.

Use TSA signal filtering only if shaft speeds are constant over time.

Signal
• Signal — TSA signal to filter. If you do not already have a TSA signal, generate one from a time-

based signal using Filtering & Averaging > Time-Synchronous Signal Averaging.

Signals to Generate
The filtered signals each retain a subset of the original TSA signal components. The TSA signal
components are:

• Primary shaft speed and specified higher-order harmonics (sh)
• Gear meshing vibrations (fundamental frequencies and their higher-order harmonics (gh)
• Specified gear meshing sidebands (ss)
• All other vibration components, including degradation, faults, noise, and unspecified gear-meshing

sidebands and harmonics (ovc)

• Difference signal — Contains ovc only. Computed by diff = tsa–(sh+gh+ss)
• Regular signal — Computed by reg =sh+gh+ss
• Residual signal — Contains ss and ovc. Computed by res=tsa–(sh+gh)

Speed Settings
• Constant rotation speed (RPM) — Enter a constant rotation speed in RPM. This shaft speed

applies to all members.
• Nominal rotation speed (RPM) — Use an individual rotation speed for each member by

selecting the condition variable that stores these values. You create this condition variable when
you first compute the TSA signal if you select Compute nominal speed (RPM). For more
information, see “Time-Synchronous Signal Averaging” on page 8-11.

Filter Settings
• Domain — Specify Order or Frequency.

• Specify the order domain when you know the specific ratios between gear sizes in the gearbox.
For example, if a gear rotates at three times the primary shaft speed, the order of the gear
rotation is 3. Order is independent of absolute shaft speed.

• Specify the frequency domain when you know the absolute frequencies of the rotating gears.
For example, you might have a power spectrum whose peaks correspond to gear rotation.

• Rotation orders or Frequencies (Hz) — Specify the order list or frequencies list for the known
harmonics, in the form [o1 o2 o3 ...] for order domain and [f1 f2 f3 ....] for frequency

8 Diagnostic Feature Designer Help

8-12



domain. o1 and f1 both must represent the primary shaft speed, which produces the fundamental
frequency.

• Number of harmonics — Number of shaft and gear meshing frequency harmonics to be retained
or filtered. This parameter includes the fundamental frequency represented by o1 or f1.

• Number of sidebands — Number of sidebands to be retained (regular signal) or filtered
(difference signal) from the order or frequency list. Modify Number of Sidebands to filter out
known wideband frequency components around gear harmonics. As machines degrade, these
wideband components typically grow. Filtering the known components at a given degradation
state can improve detection sensitivity to further degradation.

The filter settings apply to all the filtered signals you select. If you want to apply a unique setting to
each filtered signal, such as the Number of Sidebands setting, process the signals separately by
selecting one filtered signal at a time.

Additional Information
The software stores the results of the computation in new variables. The new variable names include
the source signal name with the suffix tsafilt.

For more information on filtered TSA signals, see:

• tsadifference
• tsaregular
• tsaresidual
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Ensemble Statistics
Calculate ensemble statistics when you want to characterize ensemble behavior as a whole. Also
calculate ensemble statistics when you plan to generate residual signals for feature extraction. Unlike
ensemble signals that contain multiple members, the resulting statistics signals each contain only one
member.

• Signal — Ensemble signal to be processed. This signal can be an imported data signal such as a
vibration signal, or a derived signal such as a TSA signal.

• Ensemble Statistics — Select which statistics you want to generate. For each statistic that you
select, the value is calculated at each time point across all members. The result is a single-
member signal for that statistic. For example, if you select Ensemble mean, the single computed
value at each time point is the mean of the values of all ensemble members at that time point.

• Interpolate data — Select this option to provide a common time base when the different
members in the ensemble have different sampling points.

• Interpolation method — Select the interpolation method to use. For information on
interpolation methods, see the Interpolation Method section of interp1.

• Sampling frequency — The default auto setting calculates the mean sampling frequency
across all members.

• Group by — Select a condition variable to group by when you want to separate the statistics
corresponding to different groups. For example, if your condition variable indicates healthy or
faulty, you can separate the healthy statistics from the faulty statistics.

• Plot results — Select this option if you want to plot all statistical results in the same plot. If you
want to choose which results you plot, use Signal Trace with the resulting statistics signals.

An alternative method of generating ensemble statistics is by showing signal variation in a signal
trace plot of your ensemble signal. That plotting option generates identical statistics to using
Ensemble Statistics.

The software stores the results of the computation in the SummaryData dataset. The new variable
names include the source signal name with the suffix mean, min. max, or std.
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Interpolation
Choose interpolation when your signal members have individual timestamps that vary with each
member. Interpolation resamples members to a uniformly sampled data grid.

• Signal — Signal to interpolate.
• Interpolation Method — For information on interpolating to a uniform grid, see the

Interpolation Method section of interp1.
• Sampling frequency — The default auto setting calculates the mean sampling frequency across

all members.

The software stores the results of the computation in a new variable. The new variable name includes
the source signal name with the suffix interp.

Use interpolation only if you can consider your signals to be concurrent. If you use signals that are
intentionally staggered in start time, interpolation expands each member signal from its original size
to the full length of the entire sequence using NaN fill. For example, suppose that you want to
maintain a sequence of three different measurement days. Each day has the same amount of data and
sampling frequency, but each has a different start time. Grid interpolation expands each data member
from one day to three days. This signal expansion and NaN handling increase processing overhead
and slows computation.

For more information on gridded interpolation, see “Interpolating Gridded Data” (MATLAB).
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Subtract Reference
Generate residues by subtracting a reference signal when you want to focus your analysis on signal
variation by removing normal ensemble-level behavior such as the ensemble mean.

To compute residues, you must already have a SummaryData dataset with the statistical signals you
want to remove. To generate these signals, use Filtering & Averaging > Ensemble Statistics.

• Signal — Signal to generate residues from. This signal can be the imported data signal, such as a
vibration signal, or a derived signal, such as a TSA signal.

• Signal to subtract — Choose from the list of available statistical signals.

The software stores the results of the computation in a new variable. The new variable name includes
the source signal name with the suffix res.
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Order Spectrum
An order spectrum is like a power spectrum in that it displays frequency content. However, an order
spectrum provides additional insight for harmonically interrelated systems in rotating machinery.

An order refers to a frequency that is a certain multiple of a reference rotational speed. For example,
a vibration signal with a frequency equal to twice the rotational frequency of a motor corresponds to
an order of 2. Likewise, a vibration signal that has a frequency equal to 0.5 times the rotational
frequency of the motor corresponds to an order of 0.5. For a rotating system, the primary shaft
rotation drives the fundamental frequency. The order spectrum for this system quantifies the relative
strength of the system harmonics with respect to shaft rotation. This approach has the following
benefits:

• Because the spectrum contains frequency ratios rather than absolute frequencies, the
computation is insensitive to variations in shaft speed. This insensitivity decouples the change in
the frequency location of a certain harmonic from the harmonic amplitude. In contrast, a power
spectrum would be time-varying with shaft-speed variation.

• Different harmonics point to different rotating components within the system. Features that detect
changes in a single harmonic can therefore potentially isolate individual components or locations
within the system.

Source Signal
A TSA signal is ideal for an order spectrum, since a TSA signal has already filtered out noncoherent
noise and disturbances.

Rotation Information
Specify the source of rotation rate.

• Constant rotation speed — Use this option when you can represent the rotation speed of all
members with a single scalar.

• Time-varying rotation speed (RPM) — Use this option when you have a signal containing rpm
information for every member.

• Tacho signal — Use this option when you have a signal containing tachometer pulses.

Window Settings
• Window type — For information on order spectrum window types, see 'Window' in the Name-

Value Pair Arguments section of orderspectrum.
• Overlap percent — A value of 0 for overlap percent means that adjoining segments do not

overlap. A value of 100 means that adjoining segments shift by one sample. A larger overlap
percentage produces a smoother result but increases the computation time.

Additional Information
The software stores the results of the computation in a new variable. The new variable name includes
the source signal name with the suffix os.
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For more information on order spectrum computation, see orderspectrum.
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Power Spectrum
A power spectrum characterizes frequency content and resonances within a system. Because
degradation usually causes changes in the spectral signature, spectral behavior provides a rich
source of information for feature generation.

Select from parametric and nonparametric algorithms. For the parametric methods, Diagnostic
Feature Designer fits a parametric model to the signal. The software then uses this model to
compute the spectral density. You can choose an auto-regressive (AR) model or a state-space model.

Source Signal and Frequency Settings
• Signal — Source signal for the power spectrum.
• Frequency — Frequency settings for the frequency axis. To set these values manually, clear

Select automatically and update the parameters for the frequency vector generation.

Algorithm
• Auto-regressive model — The app fits an AR model to the signal and uses this model to compute

the spectral density. For information on setting model order, approach, and windowing method,
see ar.

• State-space model — The app fits a state-space model to the signal and uses this model to
compute the spectral density.

• Model Order — Specify the model order directly, or specify a range of orders for automatic
order selection. With automatic order selection, the software automatically selects the smallest
order that leads to a good fit to the data.

• Improve results using nonlinear least squares search — Selecting this option improves
estimation results for specific scenarios, at the cost of additional computational time. For more
information, see the 'SearchMethod' option in ssestOptions.

• Maximum number of iterations — Increase the number of iterations to improve result
accuracy. Decrease the number to improve computational speed.

For more information on state-space modeling, see ssest.

• Welch's method — The app calculates the power spectrum from the source signal using Welch's
method. For information on setting window parameters, see pwelch.

Additional Information
The software stores the results of the computation in a new variable. The new variable name includes
the source signal name with the suffix ps.
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Signal Features
The signal features provide general signal-based statistical metrics that can be applied to any kind of
signal, including a time-synchronized average (TSA) vibration signal. Changes in these features can
indicate changes in the health status of your system.

Basic Statistics
The basic statistics include mean, standard deviation, root mean square (RMS), and shape factor. All
these statistics can be expected to change as a deteriorating fault signature intrudes upon the
nominal signal.

Shape factor — RMS divided by the mean of the absolute value. Shape factor is dependent on the
signal shape while being independent of the signal dimensions.

Higher-Order Statistics
The higher-order statistics provide insight to system behavior through the fourth moment (kurtosis)
and third moment (skewness) of the vibration signal.

• Kurtosis — Length of the tails of a signal distribution, or equivalently, how outlier prone the
signal is. Developing faults can increase the number of outliers, and therefore increase the value
of the kurtosis metric. The kurtosis has a value of 3 for a normal distribution. For more
information, see kurtosis.

• Excess Kurtosis — Kurtosis value shifted by 3 so that the feature value is 0 for a normal
distribution.

• Bias-corrected — Correct systematic bias that occurs when a sample represents a larger
population. For ensemble signals, this representation applies when taking or using signal
measurements for one portion of the operating interval that the measurements represent. For
example, if you track machinery telemetry health for one hour per week while the machinery
runs continuously, the difference between one hour and one week imposes a bias on the
kurtosis estimate.

Bias correction is most effective with normal distributions. Consider using bias correction
especially when you are using segmented rather than continuous data.

For more information, see kurtosis
• Skewness — Asymmetry of a signal distribution. Faults can impact distribution symmetry and

therefore increase the level of skewness.

• Bias-corrected — Correct systematic bias that occurs when a sample represents a larger
population. For ensemble signals, this representation applies when taking or using signal
measurements for one portion of the operating interval that the measurements represent. For
example, if you track machinery telemetry health for one hour per week while the machinery
runs continuously, the difference between one hour and one week imposes a bias on the
skewness estimate.

Bias correction is most effective with normal distributions. Consider using bias correction
especially when you are using segmented data (frames).

For more information, see skewness.
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Impulsive Metrics
• Impulsive Metrics are properties related to the peaks of the signal.

• Peak value — Maximum absolute value of the signal. Used to compute the other impulse
metrics.

• Impulse Factor — Compare the height of a peak to the mean level of the signal.
• Crest Factor — Peak value divided by the RMS. Faults often first manifest themselves in

changes in the peakiness of a signal before they manifest in the energy represented by the
signal root mean squared. The crest factor can provide an early warning for faults when they
first develop.

• Clearance Factor — Peak value divided by the squared mean value of the square roots of the
absolute amplitudes. For rotating machinery, this feature is maximum for healthy bearings and
goes on decreasing for defective ball, defective outer race, and defective inner race
respectively. The clearance factor has the highest separation ability for defective inner race
faults.

Signal Processing Metrics
The signal processing metrics consist of distortion measurement functions. System degradation can
cause an increase in noise, a change in a harmonic relative to the fundamental, or both.

• Signal-to-Noise Ratio (SNR) —Ratio of signal power to noise power
• Total Harmonic Distortion (THD) — Ratio of total harmonic component power to fundamental

power
• Signal to Noise and Distortion Ratio (SINAD) — Ratio of total signal power to total noise-plus-

distortion power

For more information on these metrics, see snr, thd, and sinad.

Additional Information
The software stores the results of the computation in new features. The new feature names include
the source signal name with the suffix stats.

For information on interpreting feature histograms, see “Interpret Feature Histograms in Diagnostic
Feature Designer” on page 7-14.

 Signal Features

8-21



Rotating Machinery Features
The rotating machinery features describe aspects of gearbox machinery, where one master shaft
drives other rotating gears. The system is harmonically interrelated, and this interrelationship allows
metrics that can not only detect, but also locate the source of the fault.

The statistical rotating machinery features are similar in nature to their general statistical
counterparts in Signal Statistics. The remaining features were derived through research in the
literature, and empirically determined to be effective for differentiating or isolating specific types of
faults.

Signals to Use
• TSA Signal — A time-synchronous averaged (TSA) signal is essential to calculating rotating

machinery features. To generate a TSA signal, use Filtering & Averaging > Time-Synchronous
Signal Averaging.

• Difference Signal, Regular Signal — These filtered TSA signals provide the source for the
specialized rotating machinery metrics. To generate these signals, use Filtering & Averaging >
Filter Time-Synchronous Signal Averaged Signals.

Metrics Using TSA Signals
• Root Mean Square (RMS) — Indication of the overall condition of the gearbox
• Kurtosis — Indication of major peaks in the signal
• Crest Factor (CF) — Peak-to-RMS ratio, which is an indication of gear damage in its early stages,

especially where vibration signals exhibit impulsive traits

Metrics Using Difference Signals
• Kurtosis (FM4) — Detect faults isolated to only a limited number of teeth in a gear mesh
• Normalized 6th moment (M6A) — Indication of surface damage on the rotating machine

components
• Normalized 8th moment (M8A) — An improved version of the M6A indicator

Metrics Using Regular Signals
• Zero-order figure of merit (FM0) — Ratio of the standard deviations of the difference and

regular signals, which is an indication of heavy wear and tooth breakage

Metrics Using Mix of Signals
• Energy Ratio (ER) — Indication of heavy uniform wear, where multiple teeth on the gear are

damaged

Additional Information
The software stores the results of the computation in new features. The new feature names include
the source signal name with the suffix rotmac.
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For information on using these metrics for evaluating rotating machinery, see “Condition Indicators
for Gear Condition Monitoring” on page 3-10. For information on specific rotating metrics, see
gearConditionMetrics.
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Nonlinear Features
Nonlinear features provide metrics that characterize chaotic behavior in vibration signals. These
features can be useful in analyzing vibration and acoustic signals from systems such as bearings,
gears, and engines. Nonlinear feature generation is more computationally intensive than the
generation of any other features in the app.

The unique benefit of nonlinear features is that these features reflect changes in phase space
trajectory of the underlying system dynamics. These changes can surface even before the occurrence
of a fault condition. Thus, monitoring system dynamic characteristics using nonlinear features can
help identify potential faults earlier, such as when a bearing is slightly worn.

Phase-Space Reconstruction Parameters
All the nonlinear features rely on phase-space reconstruction. Phase space is a multidimensional
mapping of all possible variable states. This mapping provides a portrait of the fully dynamic behavior
of a system. Phase-space reconstruction is a technique that recreates the multidimensional phase
space from a single one-dimensional signal.

• Embedding dimension — Dimension of the phase space, equivalent to the number of state
variables in the dynamic system

• Lag — Delay value used to perform the reconstruction

The default ‘Auto’ setting results in estimation of these parameters. Vary the parameters manually
to explore the impact of the settings on the effectiveness of the resulting features.

For more information on phase-space reconstruction, see phaseSpaceReconstruction.

Approximate Entropy
Approximate entropy measures the regularity in the signal, or conversely, the signal unpredictability.
Degradation within a system typically increases the approximate entropy.

• Radius — Similarity criterion that identifies a meaningful range in which fluctuations in data are
to be considered similar. The ‘Auto’ setting invokes the default, which is based on the variance
or covariance of the signal.

Correlation Dimension
Correlation dimension measures chaotic signal complexity, which reflects self-similarity. Degradation
typically increases signal complexity and in doing so increases the value of this metric.

• Similarity radius — Bounding range for points to be included in the correlation dimension
calculation. The default values are based on the signal covariance.

Explore radius values visually using Explore. Explore brings up a plot of correlation integral
versus radius. The correlation integral is the mean probability that the states of a system are close
at two different time intervals. This integral reflects self-similarity. You can modify the similarity
range by moving either of the vertical bounding lines, as shown in the following figure. The goal is
to bound a linear portion of the curve. The bounding values transfer automatically to the
Correlation dimension settings when you close the figure.
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• Number of points — Number of points between the min and max range values. This setting
drives the resolution of the calculation.

For more information on correlation dimension, see correlationDimension.

Lyapunov Exponent
The Lyapunov exponent measures the degree of chaos due to signal abnormality, based on the rate of
separation of infinitesimally close trajectories in phase space. Degradation within the system
increases this value. A positive Lyapunov exponent indicates the presence of chaos, with degree
related to the magnitude of the exponent. A negative exponent indicates a nonchaotic signal.

• Expansion range – Bounding integer range that delimits the points to be used to estimate the
local expansion rate. This rate is then used to calculate the Lyapunov exponent.

Explore the relationship between the expansion range and the expansion rate (average log
divergence) visually by using Explore. Select a portion of the plot that is linear, using integers to
bound the region. The bounding values transfer automatically to the Min and Max Expansion
range settings when you close the figure.
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• Mean period — Threshold integer value used to find the nearest neighbor for a specific point to
estimate the largest Lyapunov exponent. The software bases the default value on the mean
frequency of the signal.

For more information on the Lyapunov exponent, see lyapunovExponent.

Additional Information
The software stores the results of the computation in new features. The new feature names include
the source signal name with the suffix nonlin.
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Spectral Features
Spectral features provide frequency-domain metrics on your data. To compute spectral features, you
must already have a power spectrum or an order spectrum variable.

Spectrum
• Spectrum — Choose from the available spectrum variables. The software brings up the plot of

that variable for reference, and converts the plot from log scale to linear scale.

Spectral Peaks
• Peak amplitude — Generate a feature based on the amplitude of the peaks.
• Peak frequency — Generate a feature based on the frequency of the peaks.
• Peak value lower threshold — Constrain peak size to exclude low-amplitude peaks. For more

information, in findpeaks, see the MinPeakHeight name-value pair argument.
• Number of peaks — Number of peaks to generate features for. The software selects N most

prominent peaks in the chosen frequency band, going in the descending amplitude order. For
more information, in findpeaks, see the NPeaks name-value pair argument.

• Minimum frequency gap — Specify a minimum frequency gap. If the gap between two peaks is
less than this specification, the software ignores the smaller peak of the pair. For more
information, in findpeaks, see the MinPeakDistance name-value pair argument.

• Peak excursion tolerance — Specify the minimum prominence of a peak. The prominence of a
peak measures how much the peak stands out due to its intrinsic height and its location relative to
other peaks. For more information, in findpeaks, see the MinPeakProminence name-value pair
argument.

For more information, see findpeaks.

Modal Coefficients
Modal coefficient features extract modal parameters from frequency response information. The
setting for Number of peaks determines the number of modal coefficients to return.

• Natural frequency — Natural frequencies corresponding to each mode
• Damping factor — Damping factor for each mode

For more information, see modalfit.

Band Power
Band power represents the power of the signal in the selected frequency band. It is defined as the
area under the spectrum curve within the chosen band limits.

Frequency Band for All Features
Use the slider to set the frequency range within which the spectral features are computed. The slider
settings interact with the spectrum plot by shading the active area, effectively providing a data
cursor. As you move the slider, the edge of the active area in the plot moves correspondingly.
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Additional Information
The software stores the results of the computation in new features. The new feature names include
the source signal name with the suffix spec.
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Group Distances
Select group distance to determine the separation between data groups for each condition label pair.
This separation metric — the KS statistic — indicates numerically how effective a feature is at
differentiating between, say, faulty and healthy data.

Group distance is especially useful when you have more than two labels for a condition variable, as
histograms become harder to interpret when data from multiple color groups combine.

Select the feature you want to examine from Show grouping for feature. The table shows the KS
statistic for each label pairing. This statistic ranges from 0 to 1.

• A value of 0 means that the data groups are completely mixed, and therefore that the condition
value is completely ambiguous. The associated feature has no differentiation capability for this
data

• A value of 1 means that the data groups are well separated, and that the associated feature has
complete differentiation capability for this data.

Additional Information
The KS statistic indicates how well separated the cumulative distribution functions of the
distributions of the two states are, using the two-sample Kolmogorov-Smirnov test. For more
information on this test, see kstest2.
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Feature Selector
By default, the app plots histograms for all your features and displays them in reverse chronological
order so that the most recent histograms are plotted first. If you want to focus on a smaller set of
features, click Select Features. Select Features opens a selectable list of all your features. The app
plots only the histograms that correspond to the features that you select. If you generate new
features after using Feature Selector, the app automatically adds these features to the selection.
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Export Features to MATLAB Workspace
Export features to the MATLAB workspace when:

• You want to perform further analysis and visualization in the command window.
• You want to save the feature set outside of the app, or export the feature set into a different app.
• You want to incorporate the features into external data files. For example, suppose that you are

working through an ensemble datastore, and had elected in Computation Options to write
processing results to the local inAppData dataset. You can export your selected features to the
MATLAB workspace. Then take the steps to incorporate the new feature values into your external
files from the MATLAB Command Window.

When you export features, the app brings up a selectable list of features to export. The specific list
depends on where you execute the export.

• If you export from the Feature Designer tab, the list is in alphabetical order, with all features
preselected. This approach allows you to export all features at once from the main tab. You can
also tailor the selections at this level if you know which features you want.

• If you export from the Feature Ranking tab, the list is in ranked order, based on the ranking
method in Features sorted by. In this ranked list, the top five features are preselected. This
approach allows you to export only your highest-ranked features. You can also tailor the selections
at if you want to export more than the top five features.

You can export your entire dataset, including derived variables and all your features, to the MATLAB
workspace as well. To do so, in the Feature Designer tab, use Export > Export a dataset to the
MATLAB workspace.

More Information
For more information on writing to ensemble datastore files in the command line, see “File Ensemble
Datastore With Measured Data” on page 1-17.

 Export Features to MATLAB Workspace

8-31



Export Features to Classification Learner
Classification Learner is an app in the Statistics and Machine Learning Toolbox that trains models
to classify data. Classification Learner uses automated methods to create and test different types of
classification models using labeled datasets. For predictive maintenance, the goal of using
Classification Learner is to select and train a model that uses the exported feature set to
discriminate between data from healthy and from faulty systems. You can incorporate this model into
an algorithm for fault detection and prediction.

Use Export features to Classification Learner when:

• You want to obtain more insight on the relative effectiveness of your features.
• You are developing a predictive maintenance algorithm and want to select and train the best

model for the algorithm to use.

When you export features, the app brings up a selectable list of features to export. The specific list
depends on where you execute the export.

• If you export from the Feature Designer tab, the list is in alphabetical order, with all features
preselected. This approach allows you to export all features at once from the main tab. You can
also tailor the selections at this level if you know which features you want.

• If you export from the Feature Ranking tab, the list is in ranked order, based on the ranking
method in Features sorted by. In this ranked list, the top five features are preselected. This
approach allows you to export only your highest-ranked features. You can also tailor the selections
at if you want to export more than the top five features.

More Information
For more information, see Classification Learner.
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Export a Dataset to the MATLAB Workspace
Export your dataset to the MATLAB workspace when:

• You want to perform further analysis and visualization in the command window.
• You want to save derived variables and features outside of the app.
• You want to incorporate features and derived variables into external data files. For example,

suppose that you are working through an ensemble datastore, and had elected in Computation
Options to write processing results to the local inAppData dataset. At the end of your session,
you can export that dataset to the MATLAB workspace. Then, take the steps to incorporate the
variables and feature values that you want to retain into your external files from the MATLAB
Command Window.

When you export data to the MATLAB workspace, you export the entire dataset that you select,
including variables, features, and condition variables.

More Information
For more information on writing in-app data to ensemble datastore files at the command line, see
“File Ensemble Datastore With Measured Data” on page 1-17.
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Generate Function for Features
Generate MATLAB code for features you select when you want a command-line version of the
computations you performed interactively in the app. The app provides code that reproduces both the
preliminary data processing and the feature extraction itself. For example, if you select features that
are based on power spectra that you computed in the app, the generated code includes the spectral
processing as well as the feature processing.

You can select all the features in a single feature table, or select only the top-ranked features in that
table.

In Feature Table, select the feature table you want to work with.

In Ranking Algorithm, choose the ranking algorithm you want to use to order the features for
selection. Only the ranking algorithms that you applied during your session appear as options. If you
want to generate code for all features regardless of ranking, select Use All Features.

In Number of Top Features, choose how many features you want to generate code for.

When you click OK, the app generates the code in a function in the editor.

If you want to customize your selection further, such as by filtering the features for specific inputs or
methods, use Generate Function for…. Selecting this option opens a list of all the signals, features,
and ranking tables you can choose from, and also opens the Code Generation tab. The Code
Generation tab allows you to filter the items in the selection list to refine what the generated code
includes. View all your selections together with no filters by clicking Sort by Selection. When your
selections are complete, click Generate Function.

For more information, see:

• “Generate a MATLAB Function in Diagnostic Feature Designer” on page 7-87
• “Automatic Feature Extraction Using Generated MATLAB Code” on page 7-80
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